Filiform left-symmetric algebras

被引:13
作者
Dekimpe, K [1 ]
Ongenae, V [1 ]
机构
[1] Katholieke Univ Leuven, B-8500 Kortrijk, Belgium
关键词
Lie algebras; filiform LSA structures;
D O I
10.1023/A:1005004223336
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A left-symmetric algebra is said to be filiform if both natural descending series induced by the product tend to zero, but as slow as possible. This is the analogue of the more common notion for Lie algebras. In this paper, we develop some theoretical aspects of this class of left-symmetric algebras and we also present a classification of them up till dimension 5.
引用
收藏
页码:165 / 199
页数:35
相关论文
共 10 条
[1]  
BENOIST Y, 1995, J DIFFER GEOM, V41, P21
[2]   MODULES FOR CERTAIN LIE-ALGEBRAS OF MAXIMAL CLASS [J].
BURDE, D ;
GRUNEWALD, F .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 99 (03) :239-254
[3]  
BURDE D, 1995, IN PRESS INT J MATH
[4]   The five-dimensional complete left-symmetric algebra structures compatible with an Abelian Lie algebra structure [J].
Dekimpe, K ;
Igodt, P ;
Ongenae, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 263 :349-375
[5]   Affine structures on a class of virtually nilpotent groups [J].
Dekimpe, K ;
Malfait, W .
TOPOLOGY AND ITS APPLICATIONS, 1996, 73 (02) :97-119
[6]  
KIM H, 1986, J DIFFER GEOM, V24, P373
[7]  
KIM H, 1987, ALGEBRAS GROUPS GEOM, V4, P73
[8]   FUNDAMENTAL GROUPS OF COMPLETE AFFINELY FLAT MANIFOLDS [J].
MILNOR, J .
ADVANCES IN MATHEMATICS, 1977, 25 (02) :178-187
[9]   THE STRUCTURE OF COMPLETE LEFT-SYMMETRICAL ALGEBRAS [J].
SEGAL, D .
MATHEMATISCHE ANNALEN, 1992, 293 (03) :569-578
[10]  
VERGNE M, 1970, B SOC MATH FR, V98, P81