Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography

被引:30
|
作者
Dehghani, H
Barber, DC
Basarab-Horwath, I
机构
[1] Sheffield Hallam Univ, Sch Engn, Sheffield S1 1WB, S Yorkshire, England
[2] Royal Hallamshire Hosp, Dept Med Phys & Clin Engn, Sheffield S10 2JF, S Yorkshire, England
关键词
electrical impedance tomography; image reconstruction; a priori information;
D O I
10.1088/0967-3334/20/1/007
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Image reconstruction in electrical impedance tomography using the sensitivity theorem is generally based on the assumption that the initial conductivity distribution of the body being imaged is uniform. The technique of image reconstruction using this method is described and reconstructed images are presented. Improvements in image quality and accuracy are demonstrated when accurate a priori 'anatomical' information, in the form of a model of the distribution of conductivity within the region to be imaged, is used to construct the sensitivity matrix. In practice correct a priori information is not available, for example the conductivity values within the various anatomical regions will not be known. An iterative algorithm is presented which allows the conductivity parameters of the a priori model to be determined during reconstruction.
引用
收藏
页码:87 / 102
页数:16
相关论文
共 50 条
  • [1] Image Reconstruction Based on the Anatomical Information for Magnetic Resonance Electrical Impedance Tomography
    Hao, Liling
    Xu, Lisheng
    Yang, Benqiang
    Li, Gang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2016, 31 (06): : 700 - 705
  • [2] Image Reconstruction In Respiratory Monitoring Based on the Anatomical Information for Magnetic Detection Electrical Impedance Tomography
    Wang Hui-quan
    Yin Jian-li
    Li Guang-xu
    Feng Yan-bo
    Wang Jin-hai
    Chen Rui-juan
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 692 - 696
  • [3] Bayesian reconstruction and use of anatomical a Priori information for emission tomography
    Bowsher, JE
    Johnson, VE
    Turkington, TG
    Jaszczak, RJ
    Floyd, CE
    Coleman, RE
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (05) : 673 - 686
  • [4] Fluorescence molecular-tomography reconstruction with a priori anatomical information
    Zhou, Lu
    Yazici, Birsen
    Ntziachristos, Vasilis
    SMALL ANIMAL WHOLE-BODY OPTICAL IMAGING BASED ON GENETICALLY ENGINEERED PROBES, 2008, 6868
  • [5] Temporal image reconstruction in electrical impedance tomography
    Adler, Andy
    Dai, Tao
    Lionheart, William R. B.
    PHYSIOLOGICAL MEASUREMENT, 2007, 28 (07) : S1 - S11
  • [6] A generative approach to Electrical Impedance Tomography image reconstruction using prior information
    Zhu, Hongxi
    Al-Jumeily, Dhiya
    Liatsis, Panos
    2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024, 2024,
  • [7] Logistic regression in image reconstruction in electrical impedance tomography
    Kozlowski, Edward
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Cieplak, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (05): : 95 - 98
  • [8] UNet model in image reconstruction for electrical impedance tomography
    Maciura, Lukasz
    Wojcik, Dariusz
    Rosa, Wojciech
    Rymarczyk, Tomasz
    Maj, Michal
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (04): : 123 - 126
  • [9] Lobe based image reconstruction in Electrical Impedance Tomography
    Schullcke, Benjamin
    Gong, Bo
    Krueger-Ziolek, Sabine
    Tawhai, Merryn
    Adler, Andy
    Mueller-Lisse, Ullrich
    Moeller, Knut
    MEDICAL PHYSICS, 2017, 44 (02) : 426 - 436
  • [10] New regularized image reconstruction for electrical impedance tomography
    Hou, WD
    Mo, YL
    IMAGE MATCHING AND ANALYSIS, 2001, 4552 : 286 - 291