Field/valley plasmonic meta-resonances in WS2-metallic nanoantenna systems: Coherent dynamics for molding plasmon fields and valley polarization

被引:2
作者
Sadeghi, Seyed M. [1 ]
Wu, Judy Z. [2 ]
机构
[1] Univ Alabama, Dept Phys & Astron, Huntsville, AL 35899 USA
[2] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
MONOLAYER; MOS2; EXCITONS;
D O I
10.1103/PhysRevB.105.035426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically study spin-valley quantum coherence dynamics in a hybrid system consisting of a monolayer of transition metal dichalcogenide (WS2) and an Ag nanoantenna. For this we map the time evolution of the Bloch and Stokes vectors to investigate, respectively, the dynamics of valley excitons and the states of polarization of plasmon near fields. The results show the formation of two types of collective resonances in the time domain, i.e., valley and field plasmonic meta-resonances (VPMR and FPMR). VPMR is shown as a coherently time-delayed ultrafast rotation of the Block vector. FPMR, on the other hand, occurs as an abrupt change in the near-field polarization of the Ag nanoantenna. The "time of occurrence" (resonance time) of such meta-resonances can be tuned using the intensity and polarization of the laser field responsible for the excitation of the system. Our results show that FPMR can decorate near fields of the Ag nanoantenna at different locations with various types of coherent-field dynamics with nanoscale spatial resolution. VPMR, on the other hand, offers an avenue to control the spin-valley states of transition metal dichalcogenide monolayers using minuscule changes in the intensity and polarization of the incident light.
引用
收藏
页数:9
相关论文
共 55 条
[41]   Gain without inversion and enhancement of refractive index via intervalley quantum coherence transfer in hybrid WS2-metallic nanoantenna [J].
Sadeghi, Seyed M. ;
Wu, Judy Z. .
PHYSICAL REVIEW A, 2021, 103 (04)
[42]   Intervalley Quantum Coherence Transfer and Coherently-Induced Chiral Plasmon Fields in WS2-Metallic Nanoantenna Systems [J].
Sadeghi, Seyed M. ;
Wu, Judy Z. .
ACS PHOTONICS, 2019, 6 (10) :2441-2449
[43]   THEORY OF TRANSIENT EXCITONIC OPTICAL NONLINEARITIES IN SEMICONDUCTOR QUANTUM-WELL STRUCTURES [J].
SCHMITTRINK, S ;
CHEMLA, DS ;
MILLER, DAB .
PHYSICAL REVIEW B, 1985, 32 (10) :6601-6609
[44]   Degree of polarization for optical near fields -: art. no. 016615 [J].
Setälä, T ;
Shevchenko, A ;
Kaivola, M ;
Friberg, AT .
PHYSICAL REVIEW E, 2002, 66 (01)
[45]   Exciton-exciton interaction in transition-metal dichalcogenide monolayers [J].
Shahnazaryan, V. ;
Iorsh, I. ;
Shelykh, I. A. ;
Kyriienko, O. .
PHYSICAL REVIEW B, 2017, 96 (11)
[46]   Combining density functional theory with macroscopic QED for quantum light-matter interactions in 2D materials [J].
Svendsen, Mark Kamper ;
Kurman, Yaniv ;
Schmidt, Peter ;
Koppens, Frank ;
Kaminer, Ido ;
Thygesen, Kristian S. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[47]   Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials [J].
Tan, Chaoliang ;
Liu, Zhengdong ;
Huang, Wei ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (09) :2615-2628
[48]   Valley entanglement of excitons in monolayers of transition-metal dichalcogenides [J].
Tokman, Mikhail ;
Wang, Yongrui ;
Belyanin, Alexey .
PHYSICAL REVIEW B, 2015, 92 (07)
[49]   Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature [J].
Wang, Shaojun ;
Li, Songlin ;
Chervy, Thibault ;
Shalabney, Atef ;
Azzini, Stefano ;
Orgiu, Emanuele ;
Hutchison, James A. ;
Genet, Cyriaque ;
Samori, Paolo ;
Ebbesen, Thomas W. .
NANO LETTERS, 2016, 16 (07) :4368-4374
[50]  
Ye Y, 2015, NAT PHOTONICS, V9, P733, DOI [10.1038/nphoton.2015.197, 10.1038/NPHOTON.2015.197]