IDEAS: individual level differential expression analysis for single-cell RNA-seq data

被引:33
作者
Zhang, Mengqi [1 ,2 ]
Liu, Si [1 ]
Miao, Zhen [3 ]
Han, Fang [3 ]
Gottardo, Raphael [4 ]
Sun, Wei [1 ,5 ,6 ]
机构
[1] Fred Hutchison Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
[2] Univ Penn, Philadelphia, PA 19104 USA
[3] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[4] Univ Lausanne Hosp, Biomed Data Sci Ctr, Lausanne, Switzerland
[5] Univ Washington, Dept Biostat, Seattle, WA 98109 USA
[6] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
关键词
scRNA-seq; IDEAS; Differential expression;
D O I
10.1186/s13059-022-02605-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We consider an increasingly popular study design where single-cell RNA-seq data are collected from multiple individuals and the question of interest is to find genes that are differentially expressed between two groups of individuals. Towards this end, we propose a statistical method named IDEAS (individual level differential expression analysis for scRNA-seq). For each gene, IDEAS summarizes its expression in each individual by a distribution and then assesses whether these individual-specific distributions are different between two groups of individuals. We apply IDEAS to assess gene expression differences of autism patients versus controls and COVID-19 patients with mild versus severe symptoms.
引用
收藏
页数:17
相关论文
共 45 条
[1]   Data Denoising and Post-Denoising Corrections in Single Cell RNA Sequencing [J].
Agarwal, Divyansh ;
Wang, Jingshu ;
Zhang, Nancy R. .
STATISTICAL SCIENCE, 2020, 35 (01) :112-128
[2]   A new method for non-parametric multivariate analysis of variance [J].
Anderson, MJ .
AUSTRAL ECOLOGY, 2001, 26 (01) :32-46
[3]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[4]   Neuregulin-ErbB Signaling Promotes Microglial Proliferation and Chemotaxis Contributing to Microgliosis and Pain after Peripheral Nerve Injury [J].
Calvo, Margarita ;
Zhu, Ning ;
Tsantoulas, Christoforos ;
Ma, Zhenzhong ;
Grist, John ;
Loeb, Jeffrey A. ;
Bennett, David L. H. .
JOURNAL OF NEUROSCIENCE, 2010, 30 (15) :5437-5450
[5]  
Choi K, 2020, GENOME BIOL, V21, DOI 10.1186/s13059-020-02103-2
[6]  
Degenhardt F, 2021, NEW SUSCEPTIBILITY L
[7]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16
[9]  
GOWER JC, 1966, BIOMETRIKA, V53, P325, DOI 10.2307/2333639
[10]   A systematic evaluation of single-cell RNA-sequencing imputation methods [J].
Hou, Wenpin ;
Ji, Zhicheng ;
Ji, Hongkai ;
Hicks, Stephanie C. .
GENOME BIOLOGY, 2020, 21 (01)