Ionic and Electronic Transport in Alluaudite Na2+2xFe2-x(SO4)3

被引:40
作者
Lu, Jiechen [1 ]
Yamada, Atsuo [1 ,2 ]
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Kyoto Univ, ESICB, Unit Element Strategy Initiat Catalysts & Batteri, Kyoto 6158510, Japan
关键词
alluaudite; cathodes; high-rate capability; ionic conductivity; sodium-ion batteries; LITHIUM BATTERIES; CATHODE MATERIAL; PHASE-DIAGRAM; SODIUM; ELECTROCHEMISTRY; CHEMISTRY; FEPO4;
D O I
10.1002/celc.201500535
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Alluaudite-type Na2+2xFe2-x(SO4)(3) has recently been discovered as a 3.8 V (highest ever Fe3+/Fe2+ redox potential) cathode material for sodium-ion batteries. Contrary to the sluggish kinetics caused by the large Na+ radius in most cathode materials for sodium-ion batteries, this alluaudite-type compound shows superior high-rate capability during electrochemical cycling. Here, to explore the underlying factors for the fast kinetics, we experimentally investigate the inherent ionic and electronic transport of this alluaudite phase by using impedance spectroscopy and potentiostatic polarization. Compared with the commercial cathode material, LiFePO4, we demonstrate four and two orders of magnitude higher intrinsic ionic and electronic conductivity, respectively, which underpin its superior high-rate capability in terms of electrode performance.
引用
收藏
页码:902 / 905
页数:4
相关论文
共 26 条
[1]   Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique [J].
Amin, R. ;
Maier, J. ;
Balaya, P. ;
Chen, D. P. ;
Lin, C. T. .
SOLID STATE IONICS, 2008, 179 (27-32) :1683-1687
[2]   Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries [J].
Armstrong, A. Robert ;
Kuganathan, Navaratnarajah ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) :13031-13035
[3]  
Barpanda P, 2011, NAT MATER, V10, P772, DOI [10.1038/NMAT3093, 10.1038/nmat3093]
[4]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[5]   Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Okubo, Masashi ;
Zhou, Haoshen ;
Yamada, Atsuo .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 :116-119
[6]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[7]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[8]   A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J].
Ellis, B. L. ;
Makahnouk, W. R. M. ;
Makimura, Y. ;
Toghill, K. ;
Nazar, L. F. .
NATURE MATERIALS, 2007, 6 (10) :749-753
[9]   Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries [J].
Komaba, Shinichi ;
Murata, Wataru ;
Ishikawa, Toru ;
Yabuuchi, Naoaki ;
Ozeki, Tomoaki ;
Nakayama, Tetsuri ;
Ogata, Atsushi ;
Gotoh, Kazuma ;
Fujiwara, Kazuya .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) :3859-3867
[10]   Synthesis, Structure, and Na-Ion Migration in Na4NiP2O7F2: A Prospective High Voltage Positive Electrode Material for the Na-Ion Battery [J].
Kundu, Dipan ;
Tripathi, Rajesh ;
Popov, Guerman ;
Makahnouk, W. R. M. ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2015, 27 (03) :885-891