Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating

被引:234
作者
Ren, Ke [1 ,2 ]
Wang, Qiankun [1 ,2 ]
Shao, Gang [3 ]
Zhao, Xiaofeng [4 ]
Wang, Yiguang [1 ]
机构
[1] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
[2] Northwestern Polytech Univ, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Shaanxi, Peoples R China
[3] Zhengzhou Univ, Henan Prov Ind Technol Res Inst Resources & Mat, Zhengzhou 450001, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Key Lab Adv High Temp Mat & Precis Formi, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings; High-entropy ceramics; Rare earth zirconates; Thermophysical properties; CONDUCTIVITY; STRATEGIES; DESIGN; OXIDE;
D O I
10.1016/j.scriptamat.2019.12.006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal barrier coating materials, commonly ceramics, are deposited on superalloy surfaces to improve their service temperature. However, the intrinsic brittleness and low thermal expansion of ceramics pose a great challenge to developing new materials to replace yttria-stabilized zirconia. Herein, entropy engineering is employed to fabricate multicomponent rare earth zirconates with a large coefficient of thermal expansion, excellent mechanical properties and ultralow thermal conductivity, without sacrificing other properties. This work provides a new insight into developing novel ceramics with a combination of mechanical and thermophysical properties, which would be significant in material development for thermal barrier coatings, thermoelectric fields, etc. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:382 / 386
页数:5
相关论文
共 34 条
  • [1] Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides
    Braun, Jeffrey L.
    Rost, Christina M.
    Lim, Mina
    Giri, Ashutosh
    Olson, David H.
    Kotsonis, George N.
    Stan, Gheorghe
    Brenner, Donald W.
    Maria, Jon-Paul
    Hopkins, Patrick E.
    [J]. ADVANCED MATERIALS, 2018, 30 (51)
  • [2] Ceramic materials for thermal barrier coatings
    Cao, XQ
    Vassen, R
    Stoever, D
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) : 1 - 10
  • [3] Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications
    Cao, XQ
    Vassen, R
    Fischer, W
    Tietz, F
    Jungen, W
    Stöver, D
    [J]. ADVANCED MATERIALS, 2003, 15 (17) : 1438 - 1442
  • [4] Cao XQ, 2001, J AM CERAM SOC, V84, P2086, DOI 10.1111/j.1151-2916.2001.tb00962.x
  • [5] A five-component entropy-stabilized fluorite oxide
    Chen, Kepi
    Pei, Xintong
    Tang, Lei
    Cheng, Haoran
    Li, Zemin
    Li, Cuiwei
    Zhang, Xiaowen
    An, Linan
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (11) : 4161 - 4164
  • [6] Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics
    Chen, Lin
    Hu, Mingyu
    Wu, Peng
    Feng, Jing
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4809 - 4821
  • [7] Thermal barrier coating materials
    Clarke, David R.
    Phillpot, Simon R.
    [J]. MATERIALS TODAY, 2005, 8 (06) : 22 - 29
  • [8] Thermal-barrier coatings for more efficient gas-turbine engines
    Clarke, David R.
    Oechsner, Matthias
    Padture, Nitin P.
    [J]. MRS BULLETIN, 2012, 37 (10) : 891 - 902
  • [9] Materials selection guidelines for low thermal conductivity thermal barrier coatings
    Clarke, DR
    [J]. SURFACE & COATINGS TECHNOLOGY, 2003, 163 : 67 - 74
  • [10] Materials design for the next generation thermal barrier coatings
    Clarke, DR
    Levi, CG
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 383 - 417