NON-ISOSPECTRAL 1+1 HIERARCHIES ARISING FROM A CAMASSA HOLM HIERARCHY IN 2+1 DIMENSIONS

被引:18
作者
Estevez, P. G. [1 ]
Lejarreta, J. D. [1 ]
Sardon, C. [1 ]
机构
[1] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
关键词
Lie symmetries; reductions; Camassa-Holm hierarchy; SINGULAR MANIFOLD METHOD; DIFFERENTIAL-EQUATIONS;
D O I
10.1142/S140292511100112X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-isospectral problem (Lax pair) associated with a hierarchy in 2 + 1 dimensions that generalizes the well known Camassa-Holm hierarchy is presented. Here, we have investigated the non-classical Lie symmetries of this Lax pair when the spectral parameter is considered as a field. These symmetries can be written in terms of five arbitrary constants and three arbitrary functions. Different similarity reductions associated with these symmetries have been derived.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 22 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]   COUPLED DYM,HARRY EQUATIONS WITH MULTI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05) :L269-L275
[3]  
Bluman G. W., 1974, Appl. Math. Sci., V13
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Camassa R., 1994, Advances in Applied Mechanics, V31, P1
[6]   Multicomponent equations associated to non-isospectral scattering problems [J].
Clarkson, PA ;
Gordoa, PR ;
Pickering, A .
INVERSE PROBLEMS, 1997, 13 (06) :1463-1476
[7]  
Estevez P.G., 2005, J PHYS A, V38, P1
[8]   Solutions of a Camassa-Holm hierarchy in 2+1 dimensions [J].
Estévez, PG ;
Prada, J .
THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 144 (02) :1132-1137
[9]   Symmetry reductions of a 2+1 Lax pair [J].
Estévez, PG ;
Gandarias, ML ;
Prada, J .
PHYSICS LETTERS A, 2005, 343 (1-3) :40-47
[10]   A generalization of the Sine-Gordon equation to 2+1 dimensions [J].
Estévez, PG ;
Prada, J .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (02) :164-179