A TRACE THEOREM FOR SOBOLEV SPACES ON THE SIERPINSKI GASKET

被引:4
作者
Cao, Shiping [1 ]
Li, Shuangping [2 ]
Strichartz, Robert S. [1 ]
Talwai, Prem [3 ]
机构
[1] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Columbia Business Sch, Decis Risk & Operat, New York, NY 10027 USA
关键词
Sierpinski gasket; Sobolev space; trace theorem; Laplacian; BOUNDARY-VALUE-PROBLEMS; BROWNIAN-MOTION; HARMONIC-FUNCTIONS; DIRICHLET FORMS; FRACTALS; LAPLACIAN; DOMAINS;
D O I
10.3934/cpaa.2020159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a discrete characterization of the trace of a class of Sobolev spaces on the Sierpinski gasket to the bottom line. This includes the L-2 domain of the Laplacian as a special case. In addition, for Sobolev spaces of low orders, including the domain of the Dirichlet form, the trace spaces are Besov spaces on the line.
引用
收藏
页码:3901 / 3916
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 1997, APPROX THEORY APPL N
[2]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[3]  
Cao S., SOBOLEV SPACES PCF S
[4]  
Cao S., ARXIV160707544
[5]   BOUNDARY VALUE PROBLEMS FOR HARMONIC FUNCTIONS ON DOMAINS IN SIERPINSKI GASKETS [J].
Cao, Shiping ;
Qiu, Hua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) :1147-1179
[6]  
Gu Q., ARXIV170307061
[7]  
Guo Z., 2014, ILLINOIS J MATH, V58, P497
[8]   A trace theorem for Dirichlet forms on fractals [J].
Hino, Masanori ;
Kumagai, Takashi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) :578-611
[9]  
Hinz M., ARXIV180504456
[10]   Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals [J].
Hu, Jiaxin ;
Wang, Xingsheng .
STUDIA MATHEMATICA, 2006, 177 (02) :153-172