Monte Carlo simulation of option pricing

被引:0
作者
Thuo, Gikiri [1 ]
机构
[1] Florida A&M Univ, Dept Math, Tallahassee, FL 32307 USA
来源
3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 3 | 2006年
关键词
Black-Scholes model; simulation; pertubation; analysis; gradient; option pricing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We implement gradient estimation techniques for sensitivity analysis of option pricing which can be efficiently employed in Monte Carlo simulation. Using these techniques we can simulteneously obtain an estimate of the option value together with the estimates of sensitivities of the option value to various parameters of the model. After deriving the gradient estimates we incorporate them in an iterative stochastic approximation algorithm for pricing an option with early exercise features. We illustrate the procedure using an example of an American call option with a single dividend that is analytically tractable. In particular we incorporate estimates for the gradient with respect to the early exercise threshold level.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 15 条
[1]  
[Anonymous], OPTION VALUATION ANA
[2]  
BAXTER M, 1998, FINANCIAL CALCULUS I
[3]   Monte Carlo methods for security pricing [J].
Boyle, P ;
Broadie, M ;
Glasserman, P .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1997, 21 (8-9) :1267-1321
[4]   OPTIONS - MONTE-CARLO APPROACH [J].
BOYLE, PP .
JOURNAL OF FINANCIAL ECONOMICS, 1977, 4 (03) :323-338
[5]  
CAO XR, 1994, SPRINGER LECT NOTES, V194
[6]  
Cox John C., 1985, OPTIONS MARKETS
[7]  
Glasserman P., 1991, Gradient Estimation via Perturbation Analysis
[8]  
HO YC, 1991, PERTURBATION ANAL DI
[9]   THE PRICING OF OPTIONS ON ASSETS WITH STOCHASTIC VOLATILITIES [J].
HULL, J ;
WHITE, A .
JOURNAL OF FINANCE, 1987, 42 (02) :281-300
[10]  
Hull JC., 2018, Options, Futures, and Other Derivatives, V10