Doubly robust learning for estimating individualized treatment with censored data

被引:89
作者
Zhao, Y. Q. [1 ]
Zeng, D. [2 ]
Laber, E. B. [3 ]
Song, R. [3 ]
Yuan, M. [4 ]
Kosorok, M. R. [2 ]
机构
[1] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53792 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[4] Univ Wisconsin, Dept Stat, Madison, WI 53792 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Censored data; Doubly robust estimator; Individualized treatment rule; Risk bound; Support vector machine; SUPPORT VECTOR MACHINES; REGRESSION-MODELS; TREATMENT REGIMES; CLASSIFICATION;
D O I
10.1093/biomet/asu050
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Individualized treatment rules recommend treatments based on individual patient characteristics in order to maximize clinical benefit. When the clinical outcome of interest is survival time, estimation is often complicated by censoring. We develop nonparametric methods for estimating an optimal individualized treatment rule in the presence of censored data. To adjust for censoring, we propose a doubly robust estimator which requires correct specification of either the censoring model or survival model, but not both; the method is shown to be Fisher consistent when either model is correct. Furthermore, we establish the convergence rate of the expected survival under the estimated optimal individualized treatment rule to the expected survival under the optimal individualized treatment rule. We illustrate the proposed methods using simulation study and data from a Phase III clinical trial on non-small cell lung cancer.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 32 条
[1]   Convexity, classification, and risk bounds [J].
Bartlett, PL ;
Jordan, MI ;
McAuliffe, JD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :138-156
[2]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[3]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[4]  
COX DR, 1972, J R STAT SOC B, V34, P187
[5]   UNIFORM CONSISTENCY OF THE KERNEL CONDITIONAL KAPLAN-MEIER ESTIMATE [J].
DABROWSKA, DM .
ANNALS OF STATISTICS, 1989, 17 (03) :1157-1167
[6]   Q-LEARNING WITH CENSORED DATA [J].
Goldberg, Yair ;
Kosorok, Michael R. .
ANNALS OF STATISTICS, 2012, 40 (01) :529-560
[7]   Optimization of individualized dynamic treatment regimes for recurrent diseases [J].
Huang, Xuelin ;
Ning, Jing ;
Wahed, Abdus S. .
STATISTICS IN MEDICINE, 2014, 33 (14) :2363-2378
[8]  
Kang C, 2014, BIOMETRICS, V70, P695, DOI 10.1111/biom.12191
[9]   SOME RESULTS ON TCHEBYCHEFFIAN SPLINE FUNCTIONS [J].
KIMELDORF, G ;
WAHBA, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 33 (01) :82-+
[10]   Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data [J].
Lee, YK ;
Lin, Y ;
Wahba, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :67-81