Specific ionic effects on weak polyelectrolyte multilayer formation

被引:96
作者
Kovacevic, D
van der Burgh, S
de Keizer, A
Stuart, MAC
机构
[1] Univ Zagreb, Fac Sci, Chem Phys Lab, Zagreb 100011, Croatia
[2] Univ Wageningen, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
关键词
D O I
10.1021/jp0273777
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The layer-by-layer deposition method to prepare multilayers of polyelectrolytes of alternating charge has been followed in situ by means of optical reflectometry. It has been shown previously that in solutions containing both weak polyelectrolytes and appropriate salt the buildup of multilayers is modified and becomes an adsorption/dissolution process. The influence of different salts (phosphates, chlorides, and nitrates) and polyelectrolyte molecular weight on formation and erosion of multilayers on silica surfaces was investigated. In all experiments, the anionic polyelectrolyte was poly(acrylic acid). As the cationic polyelectrolyte, poly(dimethylaminoethyl methacrylate), poly(allylamine hydrochloride), and poly(2-vinyl-N-methylpyridinium iodide) were used. It has been shown that at very low ionic strength (1 mM) regular buildup of multilayers is observed independent of the salt used. However, at higher ionic strength, dissolution also takes place, and the critical "glass-transition ionic strength" needed for the multilayer to be dissolved depends on the salt used, as well as on the polycation/polyanion pair studied.
引用
收藏
页码:7998 / 8002
页数:5
相关论文
共 44 条
[1]   Ordered polyelectrolyte "multilayers". 1. Mechanisms of growth and structure formation: A comparison with classical fuzzy "multilayers" [J].
Arys, X ;
Laschewsky, A ;
Jonas, AM .
MACROMOLECULES, 2001, 34 (10) :3318-3330
[2]  
Arys X, 2000, SUPRAMOLECULAR POLYMERS, P505
[3]  
Bertrand P, 2000, MACROMOL RAPID COMM, V21, P319, DOI 10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO
[4]  
2-7
[5]   Secondary structure of polypeptide multilayer films:: An example of locally ordered polyelectrolyte multilayers [J].
Boulmedais, F ;
Schwinté, P ;
Gergely, C ;
Voegel, JC ;
Schaaf, P .
LANGMUIR, 2002, 18 (11) :4523-4525
[6]   Salt effect on formation and properties of interpolyelectrolyte complexes and their interactions with silica particles [J].
Buchhammer, HM ;
Petzold, G ;
Lunkwitz, K .
LANGMUIR, 1999, 15 (12) :4306-4310
[7]   Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and Fourier transform infrared reflection-absorption spectroscopy [J].
Caruso, F ;
Furlong, DN ;
Ariga, K ;
Ichinose, I ;
Kunitake, T .
LANGMUIR, 1998, 14 (16) :4559-4565
[8]   Investigation of electrostatic interactions in polyelectrolyte multilayer films:: Binding of anionic fluorescent probes to layers assembled onto colloids [J].
Caruso, F ;
Lichtenfeld, H ;
Donath, E ;
Möhwald, H .
MACROMOLECULES, 1999, 32 (07) :2317-2328
[9]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[10]   Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: Polyelectrolyte complex formation in the presence of NaCl [J].
Dautzenberg, H .
MACROMOLECULES, 1997, 30 (25) :7810-7815