Model reduction of state space systems via an implicitly restarted Lanczos method

被引:90
作者
Grimme, EJ
Sorensen, DC
VanDooren, P
机构
[1] UNIV ILLINOIS, COORDINATED SCI LAB, URBANA, IL 61801 USA
[2] RICE UNIV, DEPT COMPUTAT & APPL MATH, HOUSTON, TX 77251 USA
关键词
state space systems; model reduction; nonsymmetric Lanczos method; eigenvalues; implicit restarting;
D O I
10.1007/BF02141739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonsymmetric Lanczos method has recently received significant attention as a model reduction technique for large-scale systems. Unfortunately, the Lanczos method may produce an unstable partial realization for a given, stable system. To remedy this situation, unexpensive implicit restarts are developed which can be employed to stabilize the Lanczos generated model.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 38 条
[1]  
Al-Husari M., 1991, P 30 IEEE C DEC CONT
[2]  
[Anonymous], 1975, Essentials of Pade Approximations
[3]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[4]  
BOLEY DL, 1992, KRYLOV SPACE METHODS
[5]  
BOSGRA OH, 1992, P 31 IEEE C DEC CONT
[6]   EIGENVALUES OF AX=LAMBDA-BX FOR REAL SYMMETRIC MATRICE-A AND MATRICE-B COMPUTED BY REDUCTION TO A PSEUDOSYMMETRIC FORM AND THE HR PROCESS [J].
BREBNER, MA ;
GRAD, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 43 (MAR) :99-118
[7]  
BUNSEGERSTNER A, 1981, LINEAR ALGEBRA APPL, V35, P155, DOI 10.1016/0024-3795(81)90271-8
[8]  
BUNSEGERSTNER A, 1982, LINEAR MULTILINEAR A, V12, P51
[9]   THE STABILITY AND INSTABILITY OF PARTIAL REALIZATIONS [J].
BYRNES, CI ;
LINDQUIST, A .
SYSTEMS & CONTROL LETTERS, 1982, 2 (02) :99-105
[10]  
Calvetti D., 1994, ELECTRON T NUMER ANA, V2, P1