Fast Identification of Soybean Seed Varieties Using Laser-Induced Breakdown Spectroscopy Combined With Convolutional Neural Network

被引:12
作者
Li, Xiaolong [1 ]
He, Zhenni [1 ]
Liu, Fei [1 ,2 ]
Chen, Rongqin [1 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou, Peoples R China
[2] Zhejiang Univ, Huanan Ind Technol, Res Inst, Guangzhou, Peoples R China
关键词
soybean seed; variety identification; laser-induced breakdown spectroscopy; convolutional neural network; voting strategy; AGRICULTURE; INFORMATION; SELECTION; SUPPORT;
D O I
10.3389/fpls.2021.714557
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soybean seed purity is a critical factor in agricultural products, standardization of seed quality, and food processing. In this study, laser-induced breakdown spectroscopy (LIBS) as an effective technology was successfully used to identify ten varieties of soybean seeds. We improved the traditional sample preparation scheme for LIBS. Instead of grinding and squashing, we propose a time-efficient method by pressing soybean seeds into rubber sand filled with culture plates through a ruler to ensure a relatively uniform surface height. In our experimental scheme, three LIBS spectra were finally collected for each soybean seed. A majority vote based on three spectra was applied as the final decision judging the attribution of a single soybean seed. The results showed that the support vector machine (SVM) obtained the optimal identification accuracy of 90% in the prediction set. In addition, PCA-ResNet (propagation coefficient adaptive ResNet) and PCSA-ResNet (propagation coefficient synchronous adaptive ResNet) were designed based on typical ResNet structure by changing the way of self-adaption of propagation coefficients. Combined with a new form of input data called spectral matrix, PCSA-ResNet obtained the optimal performance with the discriminate accuracy of 91.75% in the prediction set. T-distributed stochastic neighbor embedding (t-SNE) was used to visualize the clustering process of the extracted features by PCSA-ResNet. For the interpretation of the good performance of PCSA-ResNet coupled with the spectral matrix, saliency maps were further applied to visually show the pixel positions of the spectral matrix that had a significant influence on the discrimination results, indicating that the content and proportion of elements in soybean seeds could reflect the variety differences.
引用
收藏
页数:12
相关论文
共 53 条
[21]   Laser-Induced Breakdown Spectroscopy as a Powerful Tool for Distinguishing High- and Low-Vigor Soybean Seed Lots [J].
Larios, Gustavo S. ;
Nicolodelli, Gustavo ;
Senesi, Giorgio S. ;
Ribeiro, Matheus C. S. ;
Xavier, Alfredo A. P. ;
Milori, Debora M. B. P. ;
Alves, Charline Z. ;
Marangoni, Bruno S. ;
Cena, Cicero .
FOOD ANALYTICAL METHODS, 2020, 13 (09) :1691-1698
[22]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[23]   Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference [J].
Li, Tianqi ;
Hou, Zongyu ;
Fu, Yangting ;
Yu, Jianlong ;
Gu, Weilun ;
Wang, Zhe .
ANALYTICA CHIMICA ACTA, 2019, 1058 :39-47
[24]   Machine Learning in Agriculture: A Review [J].
Liakos, Konstantinos G. ;
Busato, Patrizia ;
Moshou, Dimitrios ;
Pearson, Simon ;
Bochtis, Dionysis .
SENSORS, 2018, 18 (08)
[25]   Rapid Identification of Kudzu Powder of Different Origins Using Laser-Induced Breakdown Spectroscopy [J].
Liu, Fei ;
Wang, Wei ;
Shen, Tingting ;
Peng, Jiyu ;
Kong, Wenwen .
SENSORS, 2019, 19 (06)
[26]   Neighborhood mutual information and its application on hyperspectral band selection for classification [J].
Liu, Yao ;
Xie, Hong ;
Chen, Yuehua ;
Tan, Kezhu ;
Wang, Liguo ;
Xie, Wu .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 157 :140-151
[27]   Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications [J].
Liu, Yuwei ;
Pu, Hongbin ;
Sun, Da-Wen .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2017, 69 :25-35
[28]   Identification of soybean varieties by terahertz spectroscopy and integrated learning method [J].
Luo, Hui ;
Zhu, Jianpeng ;
Xu, Wenning ;
Cui, Mengjie .
OPTIK, 2019, 184 :177-184
[29]   Effect of Cu stress on minerals in rice by analyzing husk based on laser-induced breakdown spectroscopy [J].
Luo, Ziyi ;
Rao, Honghui ;
Huang, Lin ;
Liu, Muhua ;
Chen, Tianbing ;
Yao, Mingyin ;
Li, Jing .
APPLIED PHYSICS B-LASERS AND OPTICS, 2020, 126 (01)
[30]  
McCarville MT, 2017, PLANT HLTH PROG, V18, P146, DOI [10.1094/PHP-RS-16-0062, 10.1094/php-rs-16-0062]