Extended formulations for sparsity matroids

被引:6
作者
Iwata, Satoru [1 ]
Kamiyama, Naoyuki [2 ]
Katoh, Naoki [3 ]
Kijima, Shuji [4 ]
Okamoto, Yoshio [5 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo, Japan
[2] Kyushu Univ, Inst Math Ind, Fukuoka 812, Japan
[3] Kyoto Univ, Dept Architecture & Architectural Engn, Kyoto, Japan
[4] Kyushu Univ, Dept Informat, Fukuoka 812, Japan
[5] Univ Electrocommun, Grad Sch Informat & Engn, Dept Commun Engn & Informat, Chofu, Tokyo 182, Japan
基金
日本学术振兴会;
关键词
GRAPHS; ALGORITHMS; RIGIDITY; MODEL;
D O I
10.1007/s10107-015-0936-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show the existence of a polynomial-size extended formulation for the base polytope of a -sparsity matroid. For an undirected graph , the size of the formulation is when and when . To this end, we employ the technique developed by Faenza et al. recently that uses a randomized communication protocol.
引用
收藏
页码:565 / 574
页数:10
相关论文
共 16 条
[1]  
Conforti M., 2015, ARXIV150202817CSDM
[2]  
Edmonds J., 1971, MATH PROGRAM, V1, P127, DOI DOI 10.1007/BF01584082
[3]   Extended formulations, nonnegative factorizations, and randomized communication protocols [J].
Faenza, Yuri ;
Fiorini, Samuel ;
Grappe, Roland ;
Tiwary, Hans Raj .
MATHEMATICAL PROGRAMMING, 2015, 153 (01) :75-94
[4]   Smallest compact formulation for the permutahedron [J].
Goemans, Michel X. .
MATHEMATICAL PROGRAMMING, 2015, 153 (01) :5-11
[5]   ON DEGREES OF VERTICES OF DIRECTED GRAPH [J].
HAKIMI, SL .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1965, 279 (04) :290-&
[6]  
Hirahara S., 2014, COMP201425 IEICE, V114, P1
[8]  
Kaibel V., 2015, ARXIV150403872CSDM
[9]   GRAPHS AND RIGIDITY OF PLANE SKELETAL STRUCTURES [J].
LAMAN, G .
JOURNAL OF ENGINEERING MATHEMATICS, 1970, 4 (04) :331-&
[10]   USING SEPARATION ALGORITHMS TO GENERATE MIXED INTEGER MODEL REFORMULATIONS [J].
MARTIN, RK .
OPERATIONS RESEARCH LETTERS, 1991, 10 (03) :119-128