Maps on matrix algebras preserving idempotents

被引:23
作者
Dolinar, G [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, SI-10000 Ljubljana, Slovenia
关键词
nonlinear preserver problem; idempotent;
D O I
10.1016/S0024-3795(03)00463-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M-n be the algebra of all n x n complex matrices and P-n the set of all idempotents in M-n. Suppose phi : M-n --> M-n is a surjective map satisfying A - lambdaB is an element of P-n if and only if phi(A) - lambdaphi(B) is an element of P-n, A, B is an element of M-n, lambda is an element of C. Then either phi is of the form phi(A) = TAT(-1), A is an element of M-n, or phi is of the form phi(A) = TA(t)T(-1), A is an element of M-n, where T is an element of M-n is a nonsingular matrix. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 15 条
[1]  
Bhatia R, 1999, STUD MATH, V134, P99
[2]   MAPPINGS WHICH PRESERVE IDEMPOTENTS, LOCAL AUTOMORPHISMS, AND LOCAL DERIVATIONS [J].
BRESAR, M ;
SEMRL, P .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (03) :483-496
[3]   Determinant preserving maps on matrix algebras [J].
Dolinar, G ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 348 (1-3) :189-192
[4]   Some general techniques on linear preserver problems [J].
Guterman, A ;
Li, CK ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 315 (1-3) :61-81
[10]  
HUA LK, 1946, DOKL AKAD NAUK SSSR, V53, P95