Multi-view Generative Adversarial Networks

被引:17
作者
Chen, Mickael [1 ]
Denoyer, Ludovic [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, UMR 7606, LIP6, F-75005 Paris, France
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II | 2017年 / 10535卷
关键词
D O I
10.1007/978-3-319-71246-8_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning over multi-view data is a challenging problem with strong practical applications. Most related studies focus on the classification point of view and assume that all the views are available at any time. We consider an extension of this framework in two directions. First, based on the BiGAN model, the Multi-view BiGAN (MV-BiGAN) is able to perform density estimation from multi-view inputs. Second, it can deal with missing views and is able to update its prediction when additional views are provided. We illustrate these properties on a set of experiments over different datasets.
引用
收藏
页码:175 / 188
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 2014, P NEURIPS, DOI DOI 10.5555/2968826.2968851
[2]  
[Anonymous], P 2 ACM C BIOINF COM
[3]  
[Anonymous], 2013, P 27 ANN C NEUR INF, DOI DOI 10.48550/ARXIV.1305.6663
[4]  
[Anonymous], 2014, Advances in neural information processing systems
[5]  
[Anonymous], 2014, CLASS PROJECT STANFO
[6]  
[Anonymous], 2009, Deep boltzmann machines
[7]  
[Anonymous], INTERSPEECH
[8]  
Arora R, 2012, MLSP
[9]   Multimodal fusion for multimedia analysis: a survey [J].
Atrey, Pradeep K. ;
Hossain, M. Anwar ;
El Saddik, Abdulmotaleb ;
Kankanhalli, Mohan S. .
MULTIMEDIA SYSTEMS, 2010, 16 (06) :345-379
[10]   Guest Editorial: Learning from multiple sources [J].
Cesa-Bianchi, Nicolo ;
Hardoon, David R. ;
Leen, Gayle .
MACHINE LEARNING, 2010, 79 (1-2) :1-3