Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites
被引:216
作者:
Deng, Shibin
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Chem, W Lafayette, IN 47907 USAPurdue Univ, Dept Chem, W Lafayette, IN 47907 USA
Deng, Shibin
[1
]
Shi, Enzheng
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USAPurdue Univ, Dept Chem, W Lafayette, IN 47907 USA
Shi, Enzheng
[2
]
Yuan, Long
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Chem, W Lafayette, IN 47907 USAPurdue Univ, Dept Chem, W Lafayette, IN 47907 USA
Yuan, Long
[1
]
Jin, Linrui
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Chem, W Lafayette, IN 47907 USAPurdue Univ, Dept Chem, W Lafayette, IN 47907 USA
Jin, Linrui
[1
]
Dou, Letian
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USAPurdue Univ, Dept Chem, W Lafayette, IN 47907 USA
Dou, Letian
[2
,3
]
Huang, Libai
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Chem, W Lafayette, IN 47907 USAPurdue Univ, Dept Chem, W Lafayette, IN 47907 USA
Huang, Libai
[1
]
机构:
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[2] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
Two-dimensional hybrid organic-inorganic perovskites with strongly bound excitons and tunable structures are desirable for optoelectronic applications. Exciton transport and annihilation are two key processes in determining device efficiencies; however, a thorough understanding of these processes is hindered by that annihilation rates are often convoluted with exciton diffusion constants. Here we employ transient absorption microscopy to disentangle quantum-well-thickness-dependent exciton diffusion and annihilation in two-dimensional perovskites, unraveling the key role of electron-hole interactions and dielectric screening. The exciton diffusion constant is found to increase with quantum-well thickness, ranging from 0.06 +/- 0.03 to 0.34 +/- 0.03 cm(2) s(-1), which leads to long-range exciton diffusion over hundreds of nanometers. The exciton annihilation rates are more than one order of magnitude lower than those found in the monolayers of transition metal dichalcogenides. The combination of long-range exciton transport and slow annihilation highlights the unique attributes of two-dimensional perovskites as an exciting class of optoelectronic materials. Two-dimensional hybrid perovskites are promising excitonic materials; however, there currently lacks understanding on exciton diffusion and annihilation. Here Deng et al. employ transient absorption microscopy to disentangle quantum-well-thickness-dependent exciton transport and annihilation in these materials.