Scattering theory for the Hartree equation

被引:30
作者
Hayashi, N
Naumkin, PI
Ozawa, T
机构
[1] Sci Univ Tokyo, Dept Appl Math, Shinjuku Ku, Tokyo 162, Japan
[2] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
关键词
asymptotic behavior; Hartree equation; scattering;
D O I
10.1137/S0036141096312222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scattering problem for the Hartree equation i partial derivative(t)u = ?1/2 Delta u + f(\u\(2))u, (t, x) is an element of R x R-n with initial data u(0, x) = u(0)(x), x is an element of R-n, where f(\u\(2)) = V * \u\(2), V(x) = lambda\x\(?1), lambda is an element of R, n greater than or equal to 2. We prove that for any u(0) is an element of H-0,H- (gamma) boolean AND H-gamma,H- 0, with 1/2 < gamma < n/2, such that the value epsilon = \\u(0)\\(0, gamma) + \\u(0)\\(gamma,) (0) is sufficiently small, there exist unique u(+/-) is an element of H-sigma,H- (0) boolean AND H-0,H- sigma with 1/2 < sigma < gamma such that for all \t\ greater than or equal to 1 \\u(t) ? exp (-/+ if (\(u) over cap(+/-)\(2)) (x/t) log \t\) U(t)u(+/-)\\( L2) less than or equal to C epsilon\t\(-mu+7 nu)(,) where mu = min(1, gamma/2), 0 < nu < min(1, gamma-sigma/12), <(phi)over cap> denotes the Fourier transform of phi, U(t) is the free Schrodinger evolution group, and H-m,H- s is the weighted Sobolev space defined by H-m,H- (s) = {phi is an element of S'; \\phi\\(m,) (s) = \\(1 + \x\(2))(s/2) (1 ? Delta)(m/2) phi\\(L2) < infinity}.
引用
收藏
页码:1256 / 1267
页数:12
相关论文
共 22 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]  
CASTELLA F, 1997, M3 AS, V8, P1051
[3]  
CHADAM JP, 1975, J MATH PHYS, V16, P1211
[4]   CONSERVATION-LAWS AND TIME DECAY FOR THE SOLUTIONS OF SOME NON-LINEAR SCHRODINGER-HARTREE EQUATIONS AND SYSTEMS [J].
DIAS, JP ;
FIGUEIRA, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 84 (02) :486-508
[5]  
Friedman A., 1969, Partial Differential Equations
[6]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[7]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[8]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO CERTAIN NONLINEAR SCHRODINGER-HARTREE EQUATIONS [J].
GLASSEY, RT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (01) :9-18
[9]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389