Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit

被引:134
|
作者
Matouk, A. E. [1 ,2 ]
机构
[1] Hail Univ, Dept Math, Fac Sci, Hail 2440, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
Fractional-order MAVPD system; The fractional Routh-Hurwitz conditions; Chaos; Feedback control; Chaos synchronization; Nonlinear control; DIFFERENTIAL-EQUATIONS; PROJECTIVE SYNCHRONIZATION; CHUAS SYSTEM; ROSSLER; HYPERCHAOS; INTEGER; MODELS; LORENZ;
D O I
10.1016/j.cnsns.2010.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, stability analysis of the fractional-order modified Autonomous Van der Pol-Duffing (MAVPD) circuit is studied using the fractional Routh-Hurwitz criteria. A necessary condition for this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than 3. Furthermore, the fractional Routh-Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh-Hurwitz conditions and using specific choice of linear controllers, it is shown that the fractional-order MAVPD system is controlled to its equilibrium points; however, its integer-order counterpart is not controlled. Moreover, chaos synchronization of MAVPD system is found only in the fractional-order case when using a specific choice of nonlinear control functions. This shows the effect of fractional order on chaos control and synchronization. Synchronization is also achieved using the unidirectional linear error feedback coupling approach. Numerical results show the effectiveness of the theoretical analysis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:975 / 986
页数:12
相关论文
共 50 条
  • [1] Chaos Synchronization of the Modified Van der Pol-Duffing Oscillator of Fractional Order
    Buslowicz, Mikolaj
    Makarewicz, Adam
    RECENT ADVANCES IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES, 2014, 267 : 33 - 43
  • [2] Coexistence of attractors in autonomous Van der Pol-Duffing jerk oscillator: Analysis, chaos control and synchronisation in its fractional-order form
    Tamba, Victor Kamdoum
    Kingni, Sifeu Takougang
    Kuiate, Gaetan Fautso
    Fotsin, Hilaire Bertrand
    Talla, Pierre Kisito
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (01):
  • [3] Horseshoe in a modified Van der Pol-Duffing circuit
    Fan, Qing-ju
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 436 - 440
  • [4] Chaos Synchronization of a fractional-order Modified Van der Pol-Duffing System via New Linear Control, Backstepping Control and Takagi-Sugeno Fuzzy Approaches
    Matouk, Ahmed Ezzat
    COMPLEXITY, 2016, 21 (S1) : 116 - 124
  • [5] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608
  • [6] Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator
    Vincent U.E.
    Odunaike R.K.
    Laoye J.A.
    Gbindinninuola A.A.
    Journal of Control Theory and Applications, 2011, 9 (2): : 273 - 277
  • [7] Three-dimensional chaotic autonomous van der pol-duffing type oscillator and its fractional-order form
    Kuiate, Gaetan Fautso
    Kingni, Sifeu Takougang
    Tamba, Victor Kamdoum
    Talla, Pierre Kisito
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 2560 - 2573
  • [8] On bifurcations and chaos in the Van der Pol-Duffing oscillator
    Bykov, VV
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1084 - 1096
  • [9] Bistable phase synchronization and chaos in a system of coupled van der Pol-Duffing oscillators
    Kozlov, AK
    Sushchik, MM
    Molkov, YI
    Kuznetsov, AS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (12): : 2271 - 2277
  • [10] Dynamic response and vibration isolation effect of generalized fractional-order van der Pol-Duffing oscillator
    Tang J.
    Li X.
    Wang M.
    Shen Y.
    Li Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (01): : 10 - 18