Robust H∞ control design for fuzzy singularly perturbed systems with markovian jumps:: An LMI approach

被引:3
作者
Assawinchaichote, W
Nguang, SK
Shi, P
Mizumoto, M
机构
[1] Univ Auckland, Dept Elect & Comp Engn, Auckland 1, New Zealand
[2] King Mongkuts Univ Technol Thonburi, Dept Elect & Telecommun Engn, Bangkok 10140, Thailand
[3] Univ Glamorgan, Sch Technol, Div Math & Stat, Pontypridd CF37 1DL, M Glam, Wales
[4] Osaka Electrocommun Univ, Grad Sch Engn, Div Informat & Comp Sci, Osaka 5728530, Japan
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1428765
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper examines the problem of designing a robust H-infinity state-feedback and output feedback controller for a class of uncertain Markovian jump nonlinear singularly perturbed systems described by a Takagi-Sugeno (TS) fuzzy model with Markovian jumps. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear singularly perturbed systems to have an H-infinity performance are derived. To alleviate the ill-conditioning resulting from the interaction of slow and fast dynamic modes, solutions to the problem are given in terms of linear matrix inequalities which are independent of the singular perturbation epsilon, when epsilon is sufficiently small. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard nonlinear singularly perturbed systems.
引用
收藏
页码:803 / 808
页数:6
相关论文
共 30 条
[1]  
AitRami M, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P951, DOI 10.1109/CDC.1995.479108
[2]  
ASSAWINCHAICHOT.W, 2002, ICAIET, P146
[3]  
Assawinchaichote W, 2002, IEEE DECIS CONTR P, P2165, DOI 10.1109/CDC.2002.1184852
[4]   H∞-control for linear time-delay systems with Markovian jumping parameters [J].
Benjelloun, K ;
Boukas, EK ;
Costa, OLV .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 105 (01) :73-95
[5]  
Boukas E K, 2001, IEEE T AUTOMAT CONTR, V46, P944
[6]   Exponential stabilizability of stochastic systems with Markovian jumping parameters [J].
Boukas, EK ;
Yang, H .
AUTOMATICA, 1999, 35 (08) :1437-1441
[7]  
BOUKAS EK, 2001, INT J CONTR
[8]  
Boyd S., 1994, LINEAR MATRIX INEQUA, V15
[9]  
Chen BS, 2000, IEEE T FUZZY SYST, V8, P249, DOI 10.1109/91.855915
[10]   Output feedback control of Markov jump linear systems in continuous-time [J].
de Farias, DP ;
Geromel, JC ;
do Val, JBR ;
Costa, OLV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (05) :944-949