Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement

被引:61
作者
Nieto, Andy [1 ]
Huang, Lin [1 ]
Han, Young-Hwan [2 ]
Schoenung, Julie M. [1 ]
机构
[1] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
[2] Yeungnam Univ, Sch Mat Sci & Engn, Kyongsan 712749, South Korea
关键词
Sintering; Nanocomposite; Graphene; SPS; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; TRIBOLOGICAL PROPERTIES; MICROSTRUCTURE; COMPOSITES; CONSOLIDATION; DEFORMATION;
D O I
10.1016/j.ceramint.2015.01.027
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene nanoplatelet (GNP) reinforced alumina is synthesized by spark plasma sintering (SPS) using process conditions of 1100-1500 degrees C, 3-10 min dwell time, and 45-90 MPa in order to investigate the effects of GNP on sintering behavior. High volume fractions of GNP (5-15 vol%) are utilized in order to accentuate effects of GNPs. GNP effects on sintering behavior are assessed by evaluating microstructural evolution, grain growth kinetics, and microhardness. The addition of GNPs is found to suppress grain growth by a grain wrapping mechanism resulting in a 10% increase in activation energy when GNP content is increased beyond 5 vol %. Grain growth suppression partially mitigates a decrease in hardness due to the introduction of the soft GNP phase. Evidence of GNPs serving as a sintering aid are seen at short sintering times (3 min), while densification and grain size are observed to level off with extended sintering time (10 min). The application of higher pressures enhances densification, which enables GNPs to more effectively wrap around grains resulting in enhanced grain growth suppression. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:5926 / 5936
页数:11
相关论文
共 54 条
[41]   Some Novel Attributes of Graphene [J].
Rao, C. N. R. ;
Sood, A. K. ;
Voggu, Rakesh ;
Subrahmanyam, K. S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (02) :572-580
[42]   Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth [J].
Santanach, J. Gurt ;
Weibel, A. ;
Estournes, C. ;
Yang, Q. ;
Laurent, Ch. ;
Peigney, A. .
ACTA MATERIALIA, 2011, 59 (04) :1400-1408
[43]   Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites [J].
Seiner, Hanus ;
Sedlak, Petr ;
Koller, Martin ;
Landa, Michal ;
Ramirez, Cristina ;
Isabel Osendi, Maria ;
Belmonte, Manuel .
COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 75 :93-97
[44]   Spark plasma sintering of alumina [J].
Shen, ZJ ;
Johnsson, M ;
Zhao, Z ;
Nygren, M .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (08) :1921-1927
[45]   Production, properties and potential of graphene [J].
Soldano, Caterina ;
Mahmood, Ather ;
Dujardin, Erik .
CARBON, 2010, 48 (08) :2127-2150
[46]   Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites [J].
Tapaszto, Orsolya ;
Tapaszto, Levente ;
Marko, Marton ;
Kern, Frank ;
Gadow, Rainer ;
Balazsi, Csaba .
CHEMICAL PHYSICS LETTERS, 2011, 511 (4-6) :340-343
[47]   Toughening in Graphene Ceramic Composites [J].
Walker, Luke S. ;
Marotto, Victoria R. ;
Rafiee, Mohammad A. ;
Koratkar, Nikhil ;
Corral, Erica L. .
ACS NANO, 2011, 5 (04) :3182-3190
[48]   Preparation of graphene nanosheet/alumina composites by spark plasma sintering [J].
Wang, Kai ;
Wang, Yongfang ;
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong .
MATERIALS RESEARCH BULLETIN, 2011, 46 (02) :315-318
[49]   Extraordinary Physical Properties of Functionalized Graphene [J].
Wei, Weili ;
Qu, Xiaogang .
SMALL, 2012, 8 (14) :2138-2151
[50]   Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites [J].
Yadhukulakrishnan, Govindaraajan B. ;
Karumuri, Sriharsha ;
Rahman, Arif ;
Singh, Raman P. ;
Kalkan, A. Kaan ;
Harimkar, Sandip P. .
CERAMICS INTERNATIONAL, 2013, 39 (06) :6637-6646