Increasing power generation of microbial fuel cells with a nano-CeO2 modified anode

被引:13
作者
Yin, Yao [1 ]
Huang, Guangtuan [1 ]
Zhou, Ningbo [1 ]
Liu, Yongdi [1 ]
Zhang, Lehua [1 ]
机构
[1] E China Univ Sci & Technol, Sch Resources & Environm Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Anode modification; electrochemical analysis; microbial fuel cell; nano-CeO2; power generation; COMPOSITE; PERFORMANCE; ELECTRODES;
D O I
10.1080/15567036.2014.898112
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nano-CeO2 was used to modify the carbon felt anode in microbial fuel cell (MFC). The MFC with the modified anode obtained the higher closed circuit voltage resulting from the lower anode potential, the higher maximum power density (2.94 W m(-2)), and the lower internal resistance (77.1 Omega). Cyclic voltammetry (CV) results implied that the bioelectrochemical activity of exoelectrogens was promoted by nano-CeO2. Electrochemical impedance spectroscopy (EIS) results revealed that the anodic charge transfer resistance of the MFC decreased with modified anode. This study demonstrates that the nano-CeO2 can be an effective anodic catalyst for enhancing the power generation of MFC.
引用
收藏
页码:1212 / 1218
页数:7
相关论文
共 21 条
[1]  
Chang IS, 2006, J MICROBIOL BIOTECHN, V16, P163
[2]   Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells [J].
Cheng, Shaoan ;
Logan, Bruce E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (03) :492-496
[3]   Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell [J].
Di Lorenzo, Mirella ;
Scott, Keith ;
Curtis, Tom P. ;
Head, Ian M. .
CHEMICAL ENGINEERING JOURNAL, 2010, 156 (01) :40-48
[4]   Quantification of the Internal Resistance Distribution of Microbial Fuel Cells [J].
Fan, Yanzhen ;
Sharbrough, Evan ;
Liu, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (21) :8101-8107
[5]   Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies [J].
He, Zhen ;
Mansfeld, Florian .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :215-219
[6]   A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense [J].
Kim, HJ ;
Park, HS ;
Hyun, MS ;
Chang, IS ;
Kim, M ;
Kim, BH .
ENZYME AND MICROBIAL TECHNOLOGY, 2002, 30 (02) :145-152
[7]   Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J].
Liu, Jing ;
Qiao, Yan ;
Guo, Chun Xian ;
Lim, Sierin ;
Song, Hao ;
Li, Chang Ming .
BIORESOURCE TECHNOLOGY, 2012, 114 :275-280
[8]   Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J].
Logan, Bruce ;
Cheng, Shaoan ;
Watson, Valerie ;
Estadt, Garett .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) :3341-3346
[9]   Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications [J].
Lv, Zhisheng ;
Xie, Daohai ;
Yue, Xianjun ;
Feng, Chunhua ;
Wei, Chaohai .
JOURNAL OF POWER SOURCES, 2012, 210 :26-31
[10]   Bioelectricity production using a new electrode in a microbial fuel cell [J].
Ozkaya, Bestamin ;
Akoglu, Busra ;
Karadag, Dogan ;
Aci, Gokcen ;
Taskan, Ergin ;
Hasar, Halil .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2012, 35 (07) :1219-1227