Nanoscale Optical Trapping by Means of Dielectric Bowtie

被引:21
作者
Brunetti, Giuseppe [1 ]
Sasanelli, Nicola [1 ]
Armenise, Mario Nicola [1 ]
Ciminelli, Caterina [1 ]
机构
[1] Polytech Univ Bari, Dept Elect & Informat Engn, Optoelect Lab, I-70125 Bari, Italy
关键词
optical nanocavity; dielectric bowtie; nanoparticle optical trapping; WAVE-GUIDE; MANIPULATION; NANOPARTICLES; PARTICLES; PROTEINS; VIRUSES; MODES;
D O I
10.3390/photonics9060425
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Plasmonic and dielectric tweezers represent a common paradigm for an innovative and efficient optical trapping at the micro/nanoscale. Plasmonic configurations provide subwavelength mode confinement, resulting in very high optical forces, at the expense of a higher thermal effect, that could undermine the biological sample under test. On the contrary, dielectric configurations show limited optical forces values but overcome the thermal challenge. Achieving efficient optical trapping without affecting the sample temperature is still demanding. Here, we propose the design of a silicon (Si)-based dielectric nanobowtie dimer, made by two tip-to-tip triangle semiconductor elements. The combination of the conservation of the normal component of the electric displacement and the tangential component of the electric field, with a consequent large energy field confinement in the trapping site, ensures optical forces of about 27 fN with a power of 6 mW/mu m(2). The trapping of a virus with a diameter of 100 nm is demonstrated with numerical simulations, calculating a stability S = 1, and a stiffness k = 0.33 fN/nm, within a footprint of 0.96 mu m(2), preserving the temperature of the sample (temperature variation of 0.3 K).
引用
收藏
页数:11
相关论文
共 51 条
[1]   Guiding and confining light in void nanostructure [J].
Almeida, VR ;
Xu, QF ;
Barrios, CA ;
Lipson, M .
OPTICS LETTERS, 2004, 29 (11) :1209-1211
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[4]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[5]   Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers [J].
Bendix, Poul M. ;
Nader, S. ;
Reihani, S. ;
Oddershede, Lene B. .
ACS NANO, 2010, 4 (04) :2256-2262
[6]   Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement [J].
Bian, Yusheng ;
Zheng, Zheng ;
Liu, Ya ;
Liu, Jiansheng ;
Zhu, Jinsong ;
Zhou, Tao .
OPTICS EXPRESS, 2011, 19 (23) :22417-22422
[7]   A rapid label-free method for quantitation of human immunodeficiency virus type-1 particles by nanospectroscopy [J].
Block, Olivia ;
Mitra, Anirban ;
Novotny, Lukas ;
Dykes, Carrie .
JOURNAL OF VIROLOGICAL METHODS, 2012, 182 (1-2) :70-75
[8]   Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator [J].
Cai, Hong ;
Poon, Andrew W. .
OPTICS LETTERS, 2011, 36 (21) :4257-4259
[9]   Controlled Photonic Manipulation of Proteins and Other Nanomaterials [J].
Chen, Yih-Fan ;
Serey, Xavier ;
Sarkar, Rupa ;
Chen, Peng ;
Erickson, David .
NANO LETTERS, 2012, 12 (03) :1633-1637
[10]   Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices [J].
Choi, Min Sup ;
Lee, Gwan-Hyoung ;
Yu, Young-Jun ;
Lee, Dae-Yeong ;
Lee, Seung Hwan ;
Kim, Philip ;
Hone, James ;
Yoo, Won Jong .
NATURE COMMUNICATIONS, 2013, 4