Average lower independence in trees and outerplanar graphs

被引:0
作者
Bau, S
Henning, MA
Dankelmann, P
机构
[1] Univ Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
[2] Univ Natal, Sch Math & Stat Sci, ZA-4041 Durban, South Africa
关键词
average lower independence; outerplanar graphs; trees;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a vertex v of a graph G = (V, E), the lower independence number i(v)(G) of G relative to v is the minimum cardinality of a maximal independent set in G that contains v. The average lower independence number of G is i(av)(G) = 1/\V\ Sigma(vis an element ofV) i(v)(G). In this paper, we show that if G is a tree of order n, then i(av)(G) greater than or equal to 2rootn + O(1), while if G is an outer-planar graph of order n, then i(av)(G) 2rootn-/3 + O(1). Both bounds are asymptotically sharp.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 8 条
[1]   GRAPH-THEORETIC PARAMETERS CONCERNING DOMINATION, INDEPENDENCE, AND IRREDUNDANCE [J].
BOLLOBAS, B ;
COCKAYNE, EJ .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :241-249
[2]  
CHARTRAND G, 1996, GRAPHS DIGRAPHYS
[3]  
Fricke G.H., 2002, Bull. Inst. Combin. Appl., V34, P27
[4]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[5]   A characterization of i-excellent trees [J].
Haynes, TW ;
Henning, MA .
DISCRETE MATHEMATICS, 2002, 248 (1-3) :69-77
[6]  
HENNING MA, UNPUB ARS COMBIN
[7]  
Plummer M. D., 1970, J. Comb. Theory, V8, P91, DOI DOI 10.1016/S0021-9800(70)80011-4
[8]  
THOMASSEN C, 1995, HDB COMBINATORICS, V1