A simple method for characterizing and engineering thermal relaxation of an optical microcavity

被引:18
作者
Chen, Weijian [1 ]
Zhu, Jiangang [1 ,2 ]
Ozdemir, Sahin Kaya [1 ]
Peng, Bo [1 ,3 ]
Yang, Lan [1 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[3] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
LABEL-FREE DETECTION; MICRORESONATOR; MICROLASERS; RESONATORS;
D O I
10.1063/1.4960665
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermal properties of a photonic resonator are determined not only by intrinsic properties of materials, such as thermo-optic coefficient, but also by the geometry and structure of the resonator. Techniques for characterization and measurement of thermal properties of individual photonic resonator will benefit numerous applications. In this work, we demonstrate a method to optically measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect. Two nearby optical modes within the cavity are optically probed, which allows us to quantify the thermal relaxation process of the cavity by analyzing changes in the transmission spectra induced by optothermal effect. We show that the effective thermal conductance can be experimentally deduced from the thermal relaxation measurement, and it can be tailored by changing the geometric parameters of the cavity. The experimental observations are in good agreement with the proposed analytical modeling. This method can be applied to various resonators in different forms. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 31 条
[1]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[2]   Dynamical thermal behavior and thermal self-stability of microcavities [J].
Carmon, T ;
Yang, L ;
Vahala, KJ .
OPTICS EXPRESS, 2004, 12 (20) :4742-4750
[3]   Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing [J].
Dong, C. -H. ;
He, L. ;
Xiao, Y. -F. ;
Gaddam, V. R. ;
Ozdemir, S. K. ;
Han, Z. -F. ;
Guo, G. -C. ;
Yang, L. .
APPLIED PHYSICS LETTERS, 2009, 94 (23)
[4]   Sensitive optical biosensors for unlabeled targets: A review [J].
Fan, Xudong ;
White, Ian M. ;
Shopova, Siyka I. ;
Zhu, Hongying ;
Suter, Jonathan D. ;
Sun, Yuze .
ANALYTICA CHIMICA ACTA, 2008, 620 (1-2) :8-26
[5]   Compensation of thermal nonlinearity effect in optical resonators [J].
Grudinin, Ivan ;
Lee, Hansuek ;
Chen, Tong ;
Vahala, Kerry .
OPTICS EXPRESS, 2011, 19 (08) :7365-7372
[6]   Thermal instability of a compound resonator [J].
Grudinin, Ivan S. ;
Vahala, Kerry J. .
OPTICS EXPRESS, 2009, 17 (16) :14088-14097
[7]   Ultraviolet light detection using an optical microcavity [J].
Harker, Audrey ;
Mehrabani, Simin ;
Armani, Andrea M. .
OPTICS LETTERS, 2013, 38 (17) :3422-3425
[8]   Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating [J].
He, L. ;
Xiao, Y-F. ;
Dong, C. ;
Zhu, J. ;
Gaddam, V. ;
Yang, L. .
APPLIED PHYSICS LETTERS, 2008, 93 (20)
[9]   Whispering gallery microcavity lasers [J].
He, Lina ;
Oezdemir, Sahin Kaya ;
Yang, Lan .
LASER & PHOTONICS REVIEWS, 2013, 7 (01) :60-82
[10]  
He LN, 2011, NAT NANOTECHNOL, V6, P428, DOI [10.1038/nnano.2011.99, 10.1038/NNANO.2011.99]