Drone Model Identification by Convolutional Neural Network from Video Stream

被引:2
作者
Wisniewski, Mariusz [1 ]
Rana, Zeeshan A. [1 ]
Petrunin, Ivan [1 ]
机构
[1] Cranfield Univ, Digital Aviat Res & Technol Ctr DARTeC, Cranfield MK43 0AL, Beds, England
来源
2021 IEEE/AIAA 40TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC) | 2021年
关键词
Unmanned Aerial Vehicles; drones; airport security; convolutional neural network; anti-uav; synthetic images; domain randomization; synthetic drones;
D O I
10.1109/DASC52595.2021.9594392
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We present a convolutional neural network model that correctly identifies drone models in real-life video streams of flying drones. To achieve this, we show a method of generating synthetic drone images. To create a diverse dataset, the simulation parameters (such as drone textures, lighting, and orientation) are randomized. This synthetic dataset is used to train a convolutional neural network to identify the drone model: DJI Phantom, DJI Mavic, or DJI Inspire. The model is then tested on a real-life Anti-UAV dataset of flying drones. The benchmark results show that the DenseNet201 architecture performed the best. Adding Gaussian noise to the training dataset and performing full training (as opposed to freezing layers) shows the best results. The model shows an average accuracy of 92.4%, and an average precision of 88.6% on the test dataset.
引用
收藏
页数:8
相关论文
共 32 条
  • [1] [Anonymous], 2012, ar**v preprint ar**v:1207.0580
  • [2] Behera DK, 2020, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), P1012, DOI [10.1109/iciccs48265.2020.9121150, 10.1109/ICICCS48265.2020.9121150]
  • [3] Chen YR, 2017, ASIAPAC SIGN INFO PR, P686, DOI 10.1109/APSIPA.2017.8282120
  • [4] Coluccia A., DRONEVS BIRD DETECTI, P7
  • [5] Spatio-temporal Semantic Segmentation for Drone Detection
    Craye, Celine
    Ardjoune, Salem
    [J]. 2019 16TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2019,
  • [6] Dahanayaka T., 2021, PROC ACM INTERACT MO, V5, P1
  • [7] Dale H, 2020, 2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), P618, DOI [10.1109/RADAR42522.2020.9114745, 10.1109/radar42522.2020.9114745]
  • [8] Real-time high-resolution omnidirectional imaging platform for drone detection and tracking
    Demir, Bilal
    Ergunay, Selman
    Nurlu, Gokcen
    Popovic, Vladan
    Ott, Beat
    Wellig, Peter
    Thiran, Jean-Philippe
    Leblebici, Yusuf
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (05) : 1625 - 1635
  • [9] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [10] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P163