Efficient Power-Transfer Capability Analysis of the TET System Using the Equivalent Small Parameter Method

被引:22
作者
Wu, Yanzhen [1 ]
Hu, Aiguo Patrick [1 ]
Budgett, David [2 ]
Malpas, Simon C. [3 ]
Dissanayake, Thushari [2 ]
机构
[1] Univ Auckland, Dept Elect & Comp Engn, Auckland 1142, New Zealand
[2] Univ Auckland, Auckland Bioengn Inst, Auckland 1142, New Zealand
[3] Telemetry Res Ltd, Auckland 1142, New Zealand
关键词
Transcutaneous energy transfer (TET); equivalent small parameter method (ESPM); power-transfer capability; zero-voltage soft switching (ZVS); TRANSCUTANEOUS ENERGY-TRANSFER; VALUES;
D O I
10.1109/TBCAS.2010.2089685
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Transcutaneous energy transfer (TET) enables the transfer of power across the skin without direct electrical connection. It is a mechanism for powering implantable devices for the lifetime of a patient. For maximum power transfer, it is essential that TET systems be resonant on both the primary and secondary sides, which requires considerable design effort. Consequently, a strong need exists for an efficient method to aid the design process. This paper presents an analytical technique appropriate to analyze complex TET systems. The system's steady-state solution in closed form with sufficient accuracy is obtained by employing the proposed equivalent small parameter method. It is shown that power-transfer capability can be correctly predicted without tedious iterative simulations or practical measurements. Furthermore, for TET systems utilizing a current-fed push-pull soft switching resonant converter, it is found that the maximum energy transfer does not occur when the primary and secondary resonant tanks are "tuned" to the nominal resonant frequency. An optimal turning point exists, corresponding to the system's maximum power-transfer capability when optimal tuning capacitors are applied.
引用
收藏
页码:272 / 282
页数:11
相关论文
共 26 条
  • [1] ALI H, 2009, P INT C IND EL APPL, V2, P831
  • [2] [Anonymous], 2009, WIRELESS CONTACTLESS
  • [3] Novel technology for the provision of power to implantable physiological devices
    Budgett, David M.
    Hu, Aiguo Patrick
    Si, Ping
    Pallas, Wayne T.
    Donnelly, Mark G.
    Broad, Jared W. T.
    Barrett, Carolyn J.
    Guild, Sarah-Jane
    Malpas, Simon C.
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2007, 102 (04) : 1658 - 1663
  • [4] Analysis, Design, and Control of a Transcutaneous Power Regulator for Artificial Hearts
    Chen, Qianhong
    Wong, Siu Chung
    Tse, Chi K.
    Ruan, Xinbo
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2009, 3 (01) : 23 - 31
  • [5] A Novel Low Temperature Transcutaneous Energy Transfer System Suitable for High Power Implantable Medical Devices: Performance and Validation in Sheep
    Dissanayake, Thushari D.
    Budgett, David M.
    Hu, Patrick
    Bennet, Laura
    Pyner, Susan
    Booth, Lindsea
    Amirapu, Satya
    Wu, Yanzhen
    Malpas, Simon C.
    [J]. ARTIFICIAL ORGANS, 2010, 34 (05) : E160 - E167
  • [6] Experimental Study of a TET System for Implantable Biomedical Devices
    Dissanayake, Thushari D.
    Hu, Aiguo Patrick
    Malpas, Simon
    Bennet, Laura
    Taberner, Andrew
    Booth, Lindsea
    Budgett, David
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2009, 3 (06) : 370 - 378
  • [7] GREEN AW, 1993, P I ELECT ENG ELEC B, V140, P350
  • [8] Direct ZVS start-up of a current-fed resonant inverter
    Hu, Aiguo Patrick
    Covic, Grant A.
    Boys, John T.
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2006, 21 (03) : 809 - 812
  • [9] An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer
    Joung, GB
    Cho, BH
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 1998, 13 (06) : 1013 - 1022
  • [10] Nayfeh A. H., 1973, Perturbation methods