Ricci curvature of metric spaces

被引:117
作者
Ollivier, Yann [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, CNRS, F-69007 Lyon, France
关键词
D O I
10.1016/j.crma.2007.10.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a notion of Ricci curvature in metric spaces equipped with a measure or a random walk. For this we use a local contraction coefficient of the random walk acting on the space of probability measures equipped with a transportation distance. This notions allows to generalize several classical theorems associated with positive Ricci curvature, such as a spectral gap bound (Lichnerowicz theorem), Gaussian concentration of measure (Levy-Gromov theorem), logarithmic Sobolev inequalities (a result of Bakry-Emery theory) or the Bonnet-Myers theorem. The definition is compatible with Bakry-Emery theory, and is robust and very easy to implement in concrete examples such as graphs.
引用
收藏
页码:643 / 646
页数:4
相关论文
共 17 条
[1]  
BAKRY D, 1984, CR ACAD SCI I-MATH, V299, P775
[2]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[3]  
Diaconis P, 1996, ANN APPL PROBAB, V6, P695
[4]  
Dobrushin R.L., 1996, Lectures on Probability Theory and Statistics, DOI [DOI 10.1007/BFB0095674, 10.1007/BFb0095674]
[5]  
Gromov M, 1986, LECT NOTES MATH, V1200
[6]  
JOULIN A, POISSON TYPE DEVIATI
[7]  
Ledoux M., 2001, The Concentration of Measure Phenomenon
[8]  
LOTT J, RICCI CURVATURE METR
[9]  
LOTT J, OPTIMAL TRANSPORT RI
[10]  
Martinelli F, 2004, ENCYL MATH SCI, V110, P175