Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

被引:79
作者
Necpalova, Magdalena [1 ]
Anex, Robert P. [1 ]
Fienen, Michael N. [2 ]
Del Grosso, Stephen J. [3 ]
Castellano, Michael J. [4 ]
Sawyer, John E. [4 ]
Iqbal, Javed [4 ]
Pantoja, Jose L. [4 ]
Barker, Daniel W. [4 ]
机构
[1] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI USA
[2] US Geol Survey, Wisconsin Water Sci Ctr, Middleton, WI USA
[3] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO USA
[4] Iowa State Univ, Dept Agron, Ames, IA USA
关键词
DayCent model; Inverse modeling; PEST; Sensitivity analysis; Parameter identifiability; Parameter correlations; EVALUATING PARAMETER IDENTIFIABILITY; NITROUS-OXIDE EMISSIONS; SOIL ORGANIC-MATTER; STATISTICS; AUTOMATIC CALIBRATION; N2O EMISSIONS; WATER-FLOW; DAYCENT; UNCERTAINTY; ERROR;
D O I
10.1016/j.envsoft.2014.12.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil NO3- compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil NO3- and NH4+. Post-processing analyses provided insights into parameter-observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:110 / 130
页数:21
相关论文
共 72 条
  • [1] [Anonymous], 430R14003 US EPA
  • [2] [Anonymous], 2012, Parameter Estimation and Inverse Problems, DOI DOI 10.1016/C2015-0-02458-3
  • [3] [Anonymous], MANUAL ADDENDUM PEST
  • [4] UNCERTAINTY, IDENTIFIABILITY AND THE PROPAGATION OF PREDICTION ERRORS - A CASE-STUDY OF LAKE-ONTARIO
    BECK, MB
    HALFON, E
    [J]. JOURNAL OF FORECASTING, 1991, 10 (1-2) : 135 - 161
  • [5] Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
    Beven, K
    Freer, J
    [J]. JOURNAL OF HYDROLOGY, 2001, 249 (1-4) : 11 - 29
  • [6] Bitterlich S, 2004, VADOSE ZONE J, V3, P971, DOI 10.2113/3.3.971
  • [7] Bouwman AF, 2002, GLOBAL BIOGEOCHEM CY, V16, DOI [10.1029/2001GB001811, 10.1029/2001GB001812]
  • [8] Brilli L., 2013, GEOPH RES ABSTR, V15
  • [9] Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model
    Cheng, Kun
    Ogle, Stephen M.
    Parton, William J.
    Pan, Genxing
    [J]. GLOBAL CHANGE BIOLOGY, 2014, 20 (03) : 948 - 962
  • [10] Spatial variability of soil organic carbon in grasslands: implications for detecting change at different scales
    Conant, RT
    Paustian, K
    [J]. ENVIRONMENTAL POLLUTION, 2002, 116 : S127 - S135