Anisimov's Theorem for inverse semigroups

被引:3
作者
Kambites, Mark [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Inverse semigroups; idempotent problem; regular languages; WORD PROBLEM; AUTOMATA;
D O I
10.1142/S0218196715400032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The idempotent problem of a finitely generated inverse semigroup is the formal language of all words over the generators representing idempotent elements. This paper proves that a finitely generated inverse semigroup with regular idempotent problem is necessarily finite. This answers a question of Gilbert and Noonan Heale, and establishes a generalization to inverse semigroups of Anisimov's Theorem for groups.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
[41]   A note on two equivalence relations on inverse semigroups [J].
Pourmahmood-Aghababa, Hasan .
SEMIGROUP FORUM, 2012, 84 (01) :200-202
[42]   Domain theory and mirror properties in inverse semigroups [J].
Paul Poncet .
Semigroup Forum, 2012, 84 :434-446
[43]   Injective hulls of monars over inverse semigroups [J].
Schein, Boris M. .
JOURNAL OF ALGEBRA, 2013, 378 :207-216
[44]   KRONECKER COEFFICIENTS FOR (DUAL) SYMMETRIC INVERSE SEMIGROUPS [J].
Mazorchuk, Volodymyr ;
Srivastava, Shraddha .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025, 118 (01) :65-90
[45]   An elegant 3-basis for inverse semigroups [J].
João Araújo ;
Michael Kinyon .
Semigroup Forum, 2011, 82 :319-323
[46]   An elegant 3-basis for inverse semigroups [J].
Araujo, Joao ;
Kinyon, Michael .
SEMIGROUP FORUM, 2011, 82 (02) :319-323
[47]   Amenability and uniqueness for groupoids associated with inverse semigroups [J].
Scott M. LaLonde ;
David Milan .
Semigroup Forum, 2017, 95 :321-344
[48]   Maximal subgroups of amalgams of finite inverse semigroups [J].
Cherubini, Alessandra ;
Jajcayova, Tatiana B. ;
Rodaro, Emanuele .
SEMIGROUP FORUM, 2015, 90 (02) :401-424
[49]   A note on two equivalence relations on inverse semigroups [J].
Hasan Pourmahmood-Aghababa .
Semigroup Forum, 2012, 84 :200-202
[50]   Amenability and uniqueness for groupoids associated with inverse semigroups [J].
LaLonde, Scott M. ;
Milan, David .
SEMIGROUP FORUM, 2017, 95 (02) :321-344