Anisimov's Theorem for inverse semigroups

被引:3
作者
Kambites, Mark [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Inverse semigroups; idempotent problem; regular languages; WORD PROBLEM; AUTOMATA;
D O I
10.1142/S0218196715400032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The idempotent problem of a finitely generated inverse semigroup is the formal language of all words over the generators representing idempotent elements. This paper proves that a finitely generated inverse semigroup with regular idempotent problem is necessarily finite. This answers a question of Gilbert and Noonan Heale, and establishes a generalization to inverse semigroups of Anisimov's Theorem for groups.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [31] Inverse semigroups and combinatorial C*-algebras
    Ruy Exel*
    Bulletin of the Brazilian Mathematical Society, New Series, 2008, 39 : 191 - 313
  • [32] On the size of inverse semigroups given by generators
    Beaudry, Martin
    Holzer, Markus
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (8-10) : 765 - 772
  • [33] Tight representations of semilattices and inverse semigroups
    Exel, R.
    SEMIGROUP FORUM, 2009, 79 (01) : 159 - 182
  • [34] PRESENTATIONS OF INVERSE SEMIGROUPS, THEIR KERNELS AND EXTENSIONS
    Carvalho, Catarina
    Gray, Robert D.
    Ruskuc, Nik
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 90 (03) : 289 - 316
  • [35] Maximal subgroups of amalgams of finite inverse semigroups
    Alessandra Cherubini
    Tatiana B. Jajcayová
    Emanuele Rodaro
    Semigroup Forum, 2015, 90 : 401 - 424
  • [36] Domain theory and mirror properties in inverse semigroups
    Poncet, Paul
    SEMIGROUP FORUM, 2012, 84 (03) : 434 - 446
  • [37] MULTILINEAR EQUATIONS IN AMALGAMS OF FINITE INVERSE SEMIGROUPS
    Cherubini, A.
    Nuccio, C.
    Rodaro, E.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (1-2) : 35 - 59
  • [38] Strongly F*-inverse covers for tiling semigroups
    E. R. Dombi
    N. D. Gilbert
    Periodica Mathematica Hungarica, 2009, 59 : 185 - 202
  • [39] Strongly F*-inverse covers for tiling semigroups
    Dombi, E. R.
    Gilbert, N. D.
    PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (02) : 185 - 202
  • [40] ON GENERATORS AND PRESENTATIONS OF SEMIDIRECT PRODUCTS IN INVERSE SEMIGROUPS
    Dombi, E. R.
    Ruskuc, N.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 353 - 365