Anisimov's Theorem for inverse semigroups

被引:3
作者
Kambites, Mark [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Inverse semigroups; idempotent problem; regular languages; WORD PROBLEM; AUTOMATA;
D O I
10.1142/S0218196715400032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The idempotent problem of a finitely generated inverse semigroup is the formal language of all words over the generators representing idempotent elements. This paper proves that a finitely generated inverse semigroup with regular idempotent problem is necessarily finite. This answers a question of Gilbert and Noonan Heale, and establishes a generalization to inverse semigroups of Anisimov's Theorem for groups.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
[31]   Inverse semigroups and combinatorial C*-algebras [J].
Ruy Exel* .
Bulletin of the Brazilian Mathematical Society, New Series, 2008, 39 :191-313
[32]   Tight representations of semilattices and inverse semigroups [J].
R. Exel .
Semigroup Forum, 2009, 79 :159-182
[33]   On the size of inverse semigroups given by generators [J].
Beaudry, Martin ;
Holzer, Markus .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (8-10) :765-772
[34]   Tight representations of semilattices and inverse semigroups [J].
Exel, R. .
SEMIGROUP FORUM, 2009, 79 (01) :159-182
[35]   PRESENTATIONS OF INVERSE SEMIGROUPS, THEIR KERNELS AND EXTENSIONS [J].
Carvalho, Catarina ;
Gray, Robert D. ;
Ruskuc, Nik .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 90 (03) :289-316
[36]   MULTILINEAR EQUATIONS IN AMALGAMS OF FINITE INVERSE SEMIGROUPS [J].
Cherubini, A. ;
Nuccio, C. ;
Rodaro, E. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (1-2) :35-59
[37]   Strongly F*-inverse covers for tiling semigroups [J].
E. R. Dombi ;
N. D. Gilbert .
Periodica Mathematica Hungarica, 2009, 59 :185-202
[38]   Maximal subgroups of amalgams of finite inverse semigroups [J].
Alessandra Cherubini ;
Tatiana B. Jajcayová ;
Emanuele Rodaro .
Semigroup Forum, 2015, 90 :401-424
[39]   Domain theory and mirror properties in inverse semigroups [J].
Poncet, Paul .
SEMIGROUP FORUM, 2012, 84 (03) :434-446
[40]   A note on two equivalence relations on inverse semigroups [J].
Pourmahmood-Aghababa, Hasan .
SEMIGROUP FORUM, 2012, 84 (01) :200-202