SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers

被引:194
作者
Klco, Natalie [1 ]
Savage, Martin J. [1 ]
Stryker, Jesse R. [1 ]
机构
[1] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
SYMMETRIES; SIMULATION; DUALITY; MODELS;
D O I
10.1103/PhysRevD.101.074512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A dynamical quantum simulation of SU(2) non-Abelian gauge field theory on a digital quantum computer is presented. This was enabled on current quantum hardware by introducing a mapping of the field onto a register of qubits that utilizes local gauge symmetry while preserving local constraints on the fields, reducing the dimensionality of the calculation. Controlled plaquette operators and gauge-variant completions in the unphysical part of the Hilbert space were designed and used to implement time evolution. The new techniques developed in this work generalize to quantum simulations of higher dimensional gauge field theories.
引用
收藏
页数:10
相关论文
共 98 条
[1]   Gluon field digitization for quantum computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Harmalkar, Siddhartha ;
Lamm, Henry ;
Lawrence, Scott ;
Warrington, Neill C. .
PHYSICAL REVIEW D, 2019, 100 (11)
[2]   DUALITY TRANSFORMATION FOR NON-ABELIAN LATTICE GAUGE-THEORIES [J].
ANISHETTY, R ;
SHARATCHANDRA, HS .
PHYSICAL REVIEW LETTERS, 1990, 65 (07) :813-815
[3]   SU(2) lattice gauge theory: Local dynamics on nonintersecting electric flux loops [J].
Anishetty, Ramesh ;
Raychowdhury, Indrakshi .
PHYSICAL REVIEW D, 2014, 90 (11)
[4]   Prepotential formulation of SU(3) lattice gauge theory [J].
Anishetty, Ramesh ;
Mathur, Manu ;
Raychowdhury, Indrakshi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (03)
[5]  
[Anonymous], 2019, IBM Q 20 TOKYO BACKE
[6]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[7]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[8]   Efficient Basis Formulation for (1+1)-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States [J].
Banuls, Mari Carmen ;
Cichy, Krzysztof ;
Cirac, J. Ignacio ;
Jansen, Karl ;
Kuehn, Stefan .
PHYSICAL REVIEW X, 2017, 7 (04)
[9]   Gauge-invariant implementation of the Abelian-Higgs model on optical lattices [J].
Bazavov, A. ;
Meurice, Y. ;
Tsai, S. -W. ;
Unmuth-Yockey, J. ;
Zhang, Jin .
PHYSICAL REVIEW D, 2015, 92 (07)
[10]   Tensor renormalization group study of the non-Abelian Higgs model in two dimensions [J].
Bazavov, Alexei ;
Catterall, Simon ;
Jha, Raghav G. ;
Unmuth-Yockey, Judah .
PHYSICAL REVIEW D, 2019, 99 (11)