Quantum coherence in a quantum heat engine

被引:54
作者
Shi, Yun-Hao [1 ,2 ,3 ,4 ]
Shi, Hai-Long [5 ,6 ]
Wang, Xiao-Hui [1 ,8 ]
Hu, Ming-Liang [9 ]
Liu, Si-Yuan [2 ,7 ,8 ]
Yang, Wen-Li [1 ,7 ,8 ]
Fan, Heng [2 ,3 ,4 ,10 ]
机构
[1] Northwest Univ, Sch Phys, Xian 710127, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] UCAS, Sch Phys Sci, Beijing 100190, Peoples R China
[4] UCAS, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[5] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[7] Northwest Univ, Inst Modern Phys, Xian 710127, Peoples R China
[8] Shaanxi Key Lab Theoret Phys Frontiers, Xian 710127, Peoples R China
[9] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Peoples R China
[10] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
关键词
quantum coherence; quantum heat engine; quantum thermodynamics; INFORMATION; COLLOQUIUM; ENTROPY;
D O I
10.1088/1751-8121/ab6a6b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify that quantum coherence is a valuable resource in the quantum heat engine, which is designed in a quantum thermodynamic cycle assisted by a quantum Maxwell's demon. This demon is in a superposed state. The quantum work and heat are redefined as the sum of coherent and incoherent parts in the energy representation. The total quantum work and the corresponding efficiency of the heat engine can be enhanced due to the coherence consumption of the demon. In addition, we discuss an universal information heat engine driven by quantum coherence. The extractable work of this heat engine is limited by the quantum coherence, even if it has no classical thermodynamic cost. This resource-driven viewpoint provides a direct and effective way to clarify the thermodynamic processes where the coherent superposition of states cannot be ignored.
引用
收藏
页数:17
相关论文
共 60 条
[1]   Work and reversibility in quantum thermodynamics [J].
Alhambra, Alvaro M. ;
Wehner, Stephanie ;
Wilde, Mark M. ;
Woods, Mischa P. .
PHYSICAL REVIEW A, 2018, 97 (06)
[2]  
[Anonymous], ARXIV12045559
[3]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[4]   Experimental verification of Landauer's principle linking information and thermodynamics [J].
Berut, Antoine ;
Arakelyan, Artak ;
Petrosyan, Artyom ;
Ciliberto, Sergio ;
Dillenschneider, Raoul ;
Lutz, Eric .
NATURE, 2012, 483 (7388) :187-U1500
[5]   Quantum thermodynamics of general quantum processes [J].
Binder, Felix ;
Vinjanampathy, Sai ;
Modi, Kavan ;
Goold, John .
PHYSICAL REVIEW E, 2015, 91 (03)
[6]   The second laws of quantum thermodynamics [J].
Brandao, Fernando ;
Horodecki, Michal ;
Ng, Nelly ;
Oppenheim, Jonathan ;
Wehner, Stephanie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) :3275-3279
[7]   Quantum Measurement Cooling [J].
Buffoni, Lorenzo ;
Solfanelli, Andrea ;
Verrucchi, Paola ;
Cuccoli, Alessandro ;
Campisi, Michele .
PHYSICAL REVIEW LETTERS, 2019, 122 (07)
[8]   Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System [J].
Camati, Patrice A. ;
Peterson, John P. S. ;
Batalhao, Tiago B. ;
Micadei, Kaonan ;
Souza, Alexandre M. ;
Sarthour, Roberto S. ;
Oliveira, Ivan S. ;
Serra, Roberto M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (24)
[9]   Feedback-controlled heat transport in quantum devices: theory and solid-state experimental proposal [J].
Campisi, Michele ;
Pekola, Jukka ;
Fazio, Rosario .
NEW JOURNAL OF PHYSICS, 2017, 19
[10]   Colloquium: Quantum fluctuation relations: Foundations and applications [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :771-791