Smart Tactile Sensing Systems Based on Embedded CNN Implementations

被引:26
作者
Alameh, Mohamad [1 ]
Abbass, Yahya [1 ]
Ibrahim, Ali [1 ,2 ]
Valle, Maurizio [1 ]
机构
[1] Univ Genoa, Dept Elect Elect & Telecommun Engn & Naval Archit, Via Opera Pia 11a, I-16145 Genoa, Italy
[2] LIU, Dept Elect & Elect Engn, Beirut 1105, Lebanon
关键词
tactile sensing systems; embedding intelligence; convolutional neural network; OBJECT RECOGNITION;
D O I
10.3390/mi11010103
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Embedding machine learning methods into the data decoding units may enable the extraction of complex information making the tactile sensing systems intelligent. This paper presents and compares the implementations of a convolutional neural network model for tactile data decoding on various hardware platforms. Experimental results show comparable classification accuracy of 90.88% for Model 3, overcoming similar state-of-the-art solutions in terms of time inference. The proposed implementation achieves a time inference of 1.2 ms while consuming around 900 <mml:semantics>mu</mml:semantics>J. Such an embedded implementation of intelligent tactile data decoding algorithms enables tactile sensing systems in different application domains such as robotics and prosthetic devices.
引用
收藏
页数:12
相关论文
共 25 条
[1]  
Abderrahmane Z, 2018, I C CONT AUTOMAT ROB, P1765, DOI 10.1109/ICARCV.2018.8581230
[2]   Haptic Zero-Shot Learning: Recognition of objects never touched before [J].
Abderrahmane, Zineb ;
Ganesh, Gowrishankar ;
Crosnier, Andre ;
Cherubini, Andrea .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 105 :11-25
[3]  
Alameh M, 2019, 2019 15TH CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME), P237, DOI [10.1109/PRIME.2019.8787748, 10.1109/prime.2019.8787748]
[4]  
[Anonymous], P 2017 ACM MULT C, DOI DOI 10.1021/CI900060X
[5]   A Comprehensive Realization of Robot Skin: Sensors, Sensing, Control, and Applications [J].
Cheng, Gordon ;
Dean-Leon, Emmanuel ;
Bergner, Florian ;
Olvera, Julio Rogelio Guadarrama ;
Leboutet, Quentin ;
Mittendorfer, Philipp .
PROCEEDINGS OF THE IEEE, 2019, 107 (10) :2034-2051
[6]   Distributed Sensing and Stimulation Systems for Sense of Touch Restoration in Prosthetics [J].
Fares, H. ;
Seminara, L. ;
Ibrahim, A. ;
Franceschi, M. ;
Pinna, L. ;
Valle, M. ;
Dosen, S. ;
Farina, D. .
2017 FIRST NEW GENERATION OF CAS (NGCAS), 2017, :177-180
[7]   CNN-Based Methods for Object Recognition With High-Resolution Tactile Sensors [J].
Gandarias, Juan M. ;
Garcia-Cerezo, Alfonso J. ;
Gomez-de-Gabriel, Jesus M. .
IEEE SENSORS JOURNAL, 2019, 19 (16) :6872-6882
[8]  
Gandarias JM, 2017, IEEE SENSOR, P981
[9]  
Hanif MA, 2018, DES AUT TEST EUROPE, P913, DOI 10.23919/DATE.2018.8342139
[10]  
Ibrahim A., 2017, MAT INTEGRATED INTEL, P571, DOI [10.1002/9783527679249.ch23, DOI 10.1002/9783527679249.CH23]