Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras

被引:0
|
作者
Skutin, A. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow 119899, Russia
基金
俄罗斯基础研究基金会;
关键词
nilpotent Lie algebras; finite p-groups; Wiegold conjecture; iterated constructions; COMMUTATOR SUBGROUPS; BREADTH;
D O I
10.1134/S000143462205008X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we strengthen the assertion of the Wiegold conjecture for nilpotent Lie algebras over an infinite field by proving that if there exists a subset of a nilpotent Lie algebra g consisting of elements of breadth not exceeding n and satisfying some additional conditions, then the dimension of the commutator subalgebra g' of g does not exceed n(n + 1)/2.
引用
收藏
页码:747 / 753
页数:7
相关论文
共 50 条
  • [21] On Minimal Faithful Representations of a Class of Nilpotent Lie Algebras
    Alejandra Alvarez, Maria
    Rojas, Nadina
    FILOMAT, 2021, 35 (05) : 1671 - 1686
  • [22] A lower bound for faithful representations of nilpotent Lie algebras
    Cagliero, Leandro
    Rojas, Nadina
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11) : 2135 - 2150
  • [23] Graphs and two-step nilpotent Lie algebras
    Mainkar, Meera G.
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 55 - 65
  • [24] On Rigid 2-Step Nilpotent Lie Algebras
    Alejandra Alvarez, Maria
    ALGEBRA COLLOQUIUM, 2018, 25 (02) : 349 - 360
  • [25] On flat pseudo-Euclidean nilpotent Lie algebras
    Boucetta, Mohamed
    Lebzioui, Hicham
    JOURNAL OF ALGEBRA, 2019, 537 : 459 - 477
  • [26] The action of a compact Lie group on nilpotent Lie algebras of type {n, 2}
    Falcone, Giovanni
    Figula, Agota
    FORUM MATHEMATICUM, 2016, 28 (04) : 795 - 806
  • [27] Minimal algebras and 2-step nilpotent Lie algebras in dimension 7
    Bazzoni, Giovanni
    GEOMETRIAE DEDICATA, 2013, 165 (01) : 111 - 133
  • [28] Minimal algebras and 2-step nilpotent Lie algebras in dimension 7
    Giovanni Bazzoni
    Geometriae Dedicata, 2013, 165 : 111 - 133
  • [29] Graphs and metric 2-step nilpotent Lie algebras
    DeCoste, Rachelle C.
    DeMeyer, Lisa
    Mainkar, Meera G.
    ADVANCES IN GEOMETRY, 2018, 18 (03) : 265 - 284
  • [30] Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras
    Benjumea, Juan C.
    Nunez, Juan
    Tenorio, Angel F.
    ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (04) : 697 - 713