Development of an Active Upper-Limb Orthosis

被引:3
作者
Alutei, A. [1 ]
Vaida, A. [1 ]
Mandru, D. [1 ]
Tatar, M. O. [1 ]
机构
[1] Tech Univ Cluj Napoca, Mech Precis Mech & Mechatron Dept, Cluj Napoca, Romania
来源
INTERNATIONAL CONFERENCE ON ADVANCEMENTS OF MEDICINE AND HEALTH CARE THROUGH TECHNOLOGY | 2009年 / 26卷
关键词
orthosis; upper-limb; functional; design; control;
D O I
10.1007/978-3-642-04292-8_89
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
An objective of Biomechatronics consists in developing intelligent systems for medical purposes. Some of these belong to Rehabilitation Engineering, designed for substituting or assisting lost or diminished sensorial and/or locomotor functions. In this paper an orthotic system for upper limb is proposed, designed, developed and tested. Its role is to assist the flexion-extension of the fingers index and middle, for elementary gripping operations, as well as the pronation-supination of the forearm.
引用
收藏
页码:405 / 408
页数:4
相关论文
共 50 条
[31]   An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications [J].
Palazzi, Emanuele ;
Luzi, Luca ;
Dimo, Eldison ;
Meneghetti, Matteo ;
Vicario, Rudy ;
Luzia, Rafael Ferro ;
Vertechy, Rocco ;
Calanca, Andrea .
TECHNOLOGIES, 2022, 10 (01)
[32]   Accuracy of observational kinematic assessment of upper-limb movements [J].
Bernhardt, J ;
Bate, PJ ;
Matyas, TA .
PHYSICAL THERAPY, 1998, 78 (03) :259-270
[33]   Computer simulation tool for upper-limb prosthesis design [J].
Hungspreugs, P ;
Heckathorne, CW ;
Childress, DS .
PROCEEDINGS OF THE 22ND ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4, 2000, 22 :1964-1967
[34]   CLEVERarm: A Lightweight and Compact Exoskeleton for Upper-Limb Rehabilitation [J].
Zeiaee, Amin ;
Zarrin, Rana Soltani ;
Eib, Andrew ;
Langari, Reza ;
Tafreshi, Reza .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :1880-1887
[35]   Sensory Feedback for Upper-Limb Prostheses: Opportunities and Barriers [J].
Jabban, Leen ;
Dupan, Sigrid ;
Zhang, Dingguo ;
Ainsworth, Ben ;
Nazarpour, Kianoush ;
Metcalfe, Benjamin W. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 :738-747
[36]   Upper-limb impedance adjustment mechanism for dynamic environments [J].
Ito, K ;
Kawakami, K ;
Izawa, J ;
Kondo, T .
SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, :2660-2664
[37]   Motion Planning of Upper-Limb Exoskeleton Robots: A Review [J].
Nguiadem, Clautilde ;
Raison, Maxime ;
Achiche, Sofiane .
APPLIED SCIENCES-BASEL, 2020, 10 (21) :1-21
[38]   Control investigation of a customizable/adjustable exoskeleton upper-limb [J].
Stopforth, Riaan .
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2013, 40 (02) :132-142
[39]   Exploring the Capabilities of Harmony for Upper-Limb Stroke Therapy [J].
de Oliveira, Ana C. ;
Rose, Chad G. ;
Warburton, Kevin ;
Ogden, Evan M. ;
Whitford, Bob ;
Lee, Robert K. ;
Deshpande, Ashish D. .
2019 IEEE 16TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2019, :637-643
[40]   Galileo Hand: An Anthropomorphic and Affordable Upper-Limb Prosthesis [J].
Fajardo, Julio ;
Ferman, Victor ;
Cardona, Diego ;
Maldonado, Guillermo ;
Lemus, Ali ;
Rohmer, Eric .
IEEE ACCESS, 2020, 8 :81365-81377