ARE THE DEGREES OF THE BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATIONS THE SAME? II

被引:4
作者
Kopotun, K. [1 ]
Leviatan, D. [2 ]
Shevchuk, I. A. [3 ]
机构
[1] Univ Manitoba, Winnipeg, MB, Canada
[2] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
[3] Natl Taras Shevchenko Univ Kyiv, Kiev, Ukraine
基金
加拿大自然科学与工程研究理事会;
关键词
UNIFORM NORM;
D O I
10.1007/s11253-010-0362-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Part I of the paper, we have proved that, for every alpha > 0 and a continuous function f, which is either convex (s = 0) or changes convexity at a finite collection Y(s) = {y(i)}(i=1)(s) of points y(i) is an element of (-1, 1), sup{n(alpha) E(n)((2)) (f, Y(s)): n >= N*} <= c(alpha, s) sup{n(alpha) E(n)((f)): n >= 1}, where En(f) and E(n)((2)) (f, Y(s)) denote, respectively, the degrees of the best unconstrained and (co)convex approximations and c.(alpha, s) is a constant depending only on alpha and s: Moreover, it has been shown that N* may be chosen to be 1 for s = 0 or s = 1; alpha not equal 4; and that it must depend on Y(s) and alpha for s = 1, alpha = 4 or s >= 2. In Part II of the paper, we show that a more general inequality sup{n(alpha) E(n)((2)) (f, Y(s)): n >= N*} <= c(alpha, N, s) sup{n(alpha) E(n)(f): n >= N}, is valid, where, depending on the triple (alpha, N, s) the number N* may depend on alpha, N, Y(s) and f or be independent of these parameters.
引用
收藏
页码:420 / 440
页数:21
相关论文
共 10 条
[1]  
Ditzian Z., 1987, SPRINGER SER COMPUT, V9, pSpringer
[2]  
Dzyadyk VK, 2008, THEORY OF UNIFORM APPROXIMATION OF FUNCTIONS BY POLYNOMIALS, P1, DOI 10.1515/9783110208245
[3]   The degree of coconvex polynomial approximation [J].
Kopotun, K ;
Leviatan, D ;
Shevchuk, IA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :409-415
[4]   Coconvex approximation in the uniform norm: The final frontier [J].
Kopotun, K ;
Leviatan, D ;
Shevchuk, IA .
ACTA MATHEMATICA HUNGARICA, 2006, 110 (1-2) :117-151
[5]   ARE THE DEGREES OF BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATION THE SAME? [J].
Kopotun, K. ;
Leviatan, D. ;
Shevchuk, I. A. .
ACTA MATHEMATICA HUNGARICA, 2009, 123 (03) :273-290
[6]   Convex polynomial approximation in the uniform norm: Conclusion [J].
Kopotun, KA ;
Leviatan, D ;
Shevchuk, IA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06) :1224-1248
[7]   POINTWISE AND UNIFORM ESTIMATES FOR CONVEX APPROXIMATION OF FUNCTIONS BY ALGEBRAIC POLYNOMIALS [J].
KOPOTUN, KA .
CONSTRUCTIVE APPROXIMATION, 1994, 10 (02) :153-178
[8]   Coconvex polynomial approximation [J].
Leviatan, D ;
Shevchuk, IA .
JOURNAL OF APPROXIMATION THEORY, 2003, 121 (01) :100-118
[9]  
Lorentz G. G., 1969, J APPROXIMATION THEO, V2, P265
[10]   Piecewise coapproximation and the Whitney inequality [J].
Pleshakov, MG ;
Shatalina, AV .
JOURNAL OF APPROXIMATION THEORY, 2000, 105 (02) :189-210