Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography

被引:72
作者
Aktas, Djeylan [1 ]
Fedrici, Bruno [1 ]
Kaiser, Florian [1 ]
Lunghi, Tommaso [1 ]
Labonte, Laurent [1 ]
Tanzilli, Sebastien [1 ]
机构
[1] Univ Nice Sophia Antipolis, Lab Phys Matiere Condensee, CNRS, UMR 7336, Parc Valrose, F-06108 Nice 2, France
关键词
Entanglement-based quantum cryptography; Quantum information and processing; Quantum photonics; Fiber optics communication; Non-linear optics; KEY DISTRIBUTION; BELL-INEQUALITY;
D O I
10.1002/lpor.201500258
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Granting information privacy is of crucial importance in our society, notably in fiber communication networks. Quantum cryptography provides a unique means to establish, at remote locations, identical strings of genuine random bits, with a level of secrecy unattainable using classical resources. However, several constraints, such as non-optimized photon number statistics and resources, detectors' noise, and optical losses, currently limit the performances in terms of both achievable secret key rates and distances. Here, these issues are addressed using an approach that combines both fundamental and off-the-shelves technological resources. High-quality bipartite photonic entanglement is distributed over a 150 km fiber link, exploiting a wavelength demultiplexing strategy implemented at the end-user locations. It is shown how coincidence rates scale linearly with the number of employed telecommunication channels, with values outperforming previous realizations by almost one order of magnitude. Thanks to its potential of scalability and compliance with device-independent strategies, this system is ready for real quantum applications, notably entanglement-based quantum cryptography.
引用
收藏
页码:451 / 457
页数:7
相关论文
共 36 条
[1]   High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources [J].
Aboussouan, Pierre ;
Alibart, Olivier ;
Ostrowsky, Daniel B. ;
Baldi, Pascal ;
Tanzilli, Sebastien .
PHYSICAL REVIEW A, 2010, 81 (02)
[2]   Large-alphabet quantum key distribution using energy-time entangled bipartite states [J].
Ali-Khan, Irfan ;
Broadbent, Curtis J. ;
Howell, John C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[3]   Bell nonlocality [J].
Brunner, Nicolas ;
Cavalcanti, Daniel ;
Pironio, Stefano ;
Scarani, Valerio ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2014, 86 (02) :419-478
[4]   A complete characterization of the heralded noiseless amplification of photons [J].
Bruno, N. ;
Pini, V. ;
Martin, A. ;
Thew, R. T. .
NEW JOURNAL OF PHYSICS, 2013, 15
[5]   Proposed Bell Experiment with Genuine Energy-Time Entanglement [J].
Cabello, Adan ;
Rossi, Alessandro ;
Vallone, Giuseppe ;
De Martini, Francesco ;
Mataloni, Paolo .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[6]   A solid-state light-matter interface at the single-photon level [J].
de Riedmatten, Hugues ;
Afzelius, Mikael ;
Staudt, Matthias U. ;
Simon, Christoph ;
Gisin, Nicolas .
NATURE, 2008, 456 (7223) :773-777
[7]   Efficient entanglement distribution over 200 kilometers [J].
Dynes, J. F. ;
Takesue, H. ;
Yuan, Z. L. ;
Sharpe, A. W. ;
Harada, K. ;
Honjo, T. ;
Kamada, H. ;
Tadanaga, O. ;
Nishida, Y. ;
Asobe, M. ;
Shields, A. J. .
OPTICS EXPRESS, 2009, 17 (14) :11440-11449
[8]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[9]   BELL INEQUALITY FOR POSITION AND TIME [J].
FRANSON, JD .
PHYSICAL REVIEW LETTERS, 1989, 62 (19) :2205-2208
[10]   Experimental wavelength-division-multiplexed photon-pair distribution [J].
Ghalbouni, Joe ;
Agha, Imad ;
Frey, Robert ;
Diamanti, Eleni ;
Zaquine, Isabelle .
OPTICS LETTERS, 2013, 38 (01) :34-36