Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells

被引:89
作者
Wilhelm, C [1 ]
Gazeau, F [1 ]
Bacri, JC [1 ]
机构
[1] Univ Paris 06, Lab Milieux Desordonnes & Heterogenes, UMR7603 FR2438 Mat & Syst Complexes, F-75005 Paris, France
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevE.67.061908
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The previously developed technique of magnetic rotational microrheology [Phys. Rev. E 67, 011504 (2003)] is proposed to investigate the rheological properties of the cell interior. An endogeneous magnetic probe is obtained inside living cells by labeling intracellular compartments with magnetic nanoparticles, following the endocytosis mechanism, the most general pathway used by eucaryotic cells to internalize substances from an extracellular medium. Primarily adsorbed on the plasma membrane, the magnetic nanoparticles are first internalized within submicronic membrane vesicles (100 nm diameter) to finally concentrate inside endocytotic intracellular compartments (0.6 mum diameter). These magnetic endosomes attract each other and form chains within the living cell when submitted to an external magnetic field. Here we demonstrate that these chains of magnetic endosomes are valuable tools to probe the intracellular dynamics at very local scales. The viscoelasticity of the chain microenvironment is quantified in terms of a viscosity eta and a relaxation time tau by analyzing the rotational dynamics of each tested chain in response to a rotation of the external magnetic field. The viscosity eta governs the long time flow of the medium surrounding the chains and the relaxation time tau reflects the proportion of solidlike versus liquidlike behavior (tau=eta/G, where G is the high-frequency shear modulus). Measurements in HeLa cells show that the cell interior is a highly heterogeneous structure, with regions where chains are embedded inside a dense viscoelastic matrix and other domains where chains are surrounded by a less rigid viscoelastic material. When one compound of the cell cytoskeleton is disrupted (microfilaments or microtubules), the intracellular viscoelasticity becomes less heterogeneous and more fluidlike, in the sense of both a lower viscosity and a lower relaxation time.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Measuring Viscoelastic Properties of Living Cells [J].
Yang Bu ;
Long Li ;
Chendong Yang ;
Rui Li ;
Jizeng Wang .
Acta Mechanica Solida Sinica, 2019, 32 :599-610
[32]   High-frequency microrheology reveals cytoskeleton dynamics in living cells [J].
Annafrancesca Rigato ;
Atsushi Miyagi ;
Simon Scheuring ;
Felix Rico .
Nature Physics, 2017, 13 (8) :771-775
[33]   High-frequency microrheology reveals cytoskeleton dynamics in living cells [J].
Rigato, A. ;
Miyagi, A. ;
Scheuring, S. ;
Rico, F. .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 :S282-S282
[34]   High-frequency microrheology reveals cytoskeleton dynamics in living cells [J].
Rigato, Annafrancesca ;
Miyagi, Atsushi ;
Scheuring, Simon ;
Rico, Felix .
NATURE PHYSICS, 2017, 13 (08) :771-+
[35]   Intracellular Microrheology in the Presence of Myosin-Generated Forces in Living Cells [J].
Wei, Ming-Tzo ;
Ou-Yang, H. Daniel .
BIOPHYSICAL JOURNAL, 2013, 104 (02) :476A-476A
[36]   Microrheology of cells with magnetic force modulation atomic force microscopy [J].
Rebelo, L. M. ;
de Sousa, J. S. ;
Mendes Filho, J. ;
Schaepe, J. ;
Doschke, H. ;
Radmacher, M. .
SOFT MATTER, 2014, 10 (13) :2141-2149
[37]   Radical polymerization inside living cells [J].
Geng, Jin ;
Li, Weishuo ;
Zhang, Yichuan ;
Thottappillil, Neelima ;
Clavadetscher, Jessica ;
Lilienkampf, Annamaria ;
Bradley, Mark .
NATURE CHEMISTRY, 2019, 11 (06) :578-586
[38]   MICROMOTORS CRUISE INSIDE LIVING CELLS [J].
不详 .
CHEMICAL & ENGINEERING NEWS, 2014, 92 (07) :32-33
[39]   Electrodiffusion of ions inside living cells [J].
Choi, YS ;
Resasco, D ;
Schaff, J ;
Slepchenko, B .
IMA JOURNAL OF APPLIED MATHEMATICS, 1999, 62 (03) :207-226
[40]   Diffusion inside Living Human Cells [J].
Leijnse, Natascha ;
Jeon, Jae-Hyung ;
Loft, Steffen ;
Metzler, Ralf ;
Oddershede, Lene B. .
BIOPHYSICAL JOURNAL, 2012, 102 (03) :377A-377A