GERBER-SHIU DISTRIBUTION AT PARISIAN RUIN FOR LEVY INSURANCE RISK PROCESSES

被引:40
作者
Baurdoux, Erik J. [1 ,5 ]
Carlos Pardo, Juan [2 ]
Luis Perez, Jose [3 ,6 ]
Renaud, Jean-Francois [4 ,7 ]
机构
[1] London Sch Econ, London, England
[2] Ctr Invest Matemat, AC Calle Jalisco S-N, Guanajuato 36240, Mexico
[3] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico
[4] Univ Quebec Montreal UQAM, Montreal, PQ, Canada
[5] London Sch Econ, Dept Stat, Houghton St, London WC2A 2AE, England
[6] Univ Nacl Autonoma Mexico, IIMAS, Dept Probabil & Stat, Mexico City 04510, DF, Mexico
[7] Univ Quebec, Dept Math, 201 Av President Kennedy, Montreal, PQ H2X 3Y7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Scale function; Parisian ruin; Levy process; excursion theory; fluctuation theory; Gerber-Shiu function; Laplace transform; OCCUPATION TIMES; PROBABILITY;
D O I
10.1017/jpr.2016.21
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inspired by the works of Landriault et al. (2011), (2014), we study the Gerber-Shiu distribution at Parisian ruin with exponential implementation delays for a spectrally negative Levy insurance risk process. To be more specific, we study the so-called Gerber-Shiu distribution for a ruin model where at each time the surplus process goes negative, an independent exponential clock is started. If the clock rings before the surplus becomes positive again then the insurance company is ruined. Our methodology uses excursion theory for spectrally negative Levy processes and relies on the theory of so-called scale functions. In particular, we extend the recent results of Landriault et al. (2011), (2014).
引用
收藏
页码:572 / 584
页数:13
相关论文
共 14 条
[1]   Exit identities for Levy processes observed at Poisson arrival times [J].
Albrecher, Hansjoerg ;
Ivanovs, Jevgenijs ;
Zhou, Xiaowen .
BERNOULLI, 2016, 22 (03) :1364-1382
[2]  
[Anonymous], 2014, INTRO LECT
[3]  
Bertoin J., 1996, LEVY PROCESSES
[4]   A note on scale functions and the time value of ruin for Levy insurance risk processes [J].
Biffis, Enrico ;
Kyprianou, Andreas E. .
INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01) :85-91
[5]   Brownian excursions and Parisian barrier options [J].
Chesney, M ;
JeanblancPicque, M ;
Yor, M .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :165-184
[6]   Parisian ruin probability with a lower ultimate bankrupt barrier [J].
Czarna, Irmina .
SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (04) :319-337
[7]   RUIN PROBABILITY WITH PARISIAN DELAY FOR A SPECTRALLY NEGATIVE LEVY RISK PROCESS [J].
Czarna, Irmina ;
Palmowski, Zbigniew .
JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) :984-1002
[8]  
Dassios A., 2008, PARISIAN RUIN UNPUB
[9]   The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin [J].
Gerber, HU ;
Shiu, ESW .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 21 (02) :129-137
[10]  
Gerber HU., 1998, North Amer-ican Actuarial Journal, V2, P48, DOI [10.1080/10920277.1998.10595671, DOI 10.1080/10920277.1998.10595671]