Additive manufacturing of high-performance carbon-composites: An integrated multi-axis pressure and temperature monitoring sensor

被引:43
作者
Kim, Hang-Gyeom [1 ]
Hajra, Sugato [1 ]
Oh, Dongik [1 ]
Kim, Namjung [2 ]
Kim, Hoe Joon [1 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Robot Engn, Daegu 42988, South Korea
[2] Gachon Univ, Dept Mech Engn, Sungnam 13120, South Korea
基金
新加坡国家研究基金会;
关键词
3D printing; Carbon composites; Pressure sensor; Multi-axis; Temperature compensation; ELECTRICAL-PROPERTIES; 3D; FABRICATION; BEHAVIOR; PLA; FDM;
D O I
10.1016/j.compositesb.2021.109079
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The additive manufacturing research confides in developing three-dimensional (3D) printing routes for the fabrication of devices with multifunctional materials in various interesting application areas such as self-healing, energy conversion/storage/harvesting, and sensing platforms. This paper reports the design optimization, fabrication, and characterization of a multi-axis pressure sensor with temperature compensation using fused filament fabrication (FFF) 3D printing of conductive carbon-based composites. Additive manufacturing offers a faster fabrication of complex structures with multiple properties such as electrical, mechanical, or thermal properties. The complex and costly metal printing can be neglected, as the 3D printing of a conductive polymer is a promising technology to utilize the electrical properties of the printed materials along with mechanical flexibilities. The present work focuses on the development of a multi-axis pressure sensor integrated with a temperature-sensing element. The pressure-sensing mechanism is based on piezoresistive behavior while temperature sensing relies on temperature-dependent resistance shift of the carbon composite. The pressure sensing part comprises a hollow structure to ensure mechanical deformation upon applied pressure while the temperature sensor is buried inside the housing material. Herein, the conductive three-dimensional printable polymer is synthesized by solution casting method with Polylactic acid (PLA), multi-walled carbon nanotubes (MWCNTs), and dichloromethane (DCM) solvent, which is transformed into filament for printing. The direction of pressure and magnitude of temperature can be evaluated separately by calibrating the responses of an applied force and temperature. Moreover, an integrated temperature sensor calibrates the shift in the electrical resistance of the pressure sensor due to the alteration in environmental temperature. The additive manufactured dual pressure and temperature sensor could open up broad applications such as human motion monitoring systems and force sensing.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors [J].
Aboutalebi, Seyed Hamed ;
Chidembo, Alfred T. ;
Salari, Maryam ;
Konstantinov, Konstantin ;
Wexler, David ;
Liu, Hua Kun ;
Dou, Shi Xue .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1855-1865
[2]   3D Printing of Highly Stretchable Strain Sensors Based on Carbon Nanotube Nanocomposites [J].
Abshirini, Mohammad ;
Charara, Mohammad ;
Liu, Yingtao ;
Saha, Mrinal ;
Altan, M. Cengiz .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (10)
[3]   Development of bendable strain sensor with embedded microchannels using 3D printing [J].
Agarwala, Shweta ;
Goh, Guo Liang ;
Yap, Yee Ling ;
Goh, Guo Dong ;
Yu, Hao ;
Yeong, Wai Yee ;
Tuan Tran .
SENSORS AND ACTUATORS A-PHYSICAL, 2017, 263 :593-599
[4]   Mechanical and electrical properties of a MWNT/epoxy composite [J].
Allaoui, A ;
Bai, S ;
Cheng, HM ;
Bai, JB .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (15) :1993-1998
[5]   Flexible Pressure Sensors for Objective Assessment of Motor Disorders [J].
Amit, Moran ;
Chukoskie, Leanne ;
Skalsky, Andrew J. ;
Garudadri, Harinath ;
Ng, Tse Nga .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (20)
[6]  
[Anonymous], 2018, INTRO PERCOLATION TH
[7]  
[Anonymous], 2008, J MANUF PROCESS, DOI [DOI 10.1016/J.JMAPRO.2009.03.002, 10.1016/J.JMAPRO.2009.03.002]
[8]   Fabrication of ABS/Graphene Oxide Composite Filament for Fused Filament Fabrication (FFF) 3D Printing [J].
Aumnate, C. ;
Pongwisuthiruchte, A. ;
Pattananuwat, P. ;
Potiyaraj, P. .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
[9]   Pressure/Temperature Sensing Bimodal Electronic Skin with Stimulus Discriminability and Linear Sensitivity [J].
Bae, Geun Yeol ;
Han, Joong Tark ;
Lee, Giwon ;
Lee, Siyoung ;
Kim, Sung Won ;
Park, Sangsik ;
Kwon, Jimin ;
Jung, Sungjune ;
Cho, Kilwon .
ADVANCED MATERIALS, 2018, 30 (43)
[10]   Residual stress measurement in Fused Deposition Modelling parts [J].
Casavola, Caterina ;
Cazzato, Alberto ;
Moramarco, Vincenzo ;
Pappalettera, Giovanni .
POLYMER TESTING, 2017, 58 :249-255