Optimal control applied to a temperature dependent schistosomiasis model

被引:13
作者
Kalinda, Chester [1 ]
Mushayabasa, Steady [2 ]
Chimbari, Moses J. [1 ]
Mukaratirwa, Samson [3 ]
机构
[1] Univ KwaZulu Natal, Coll Hlth Sci, Howard Campus, ZA-4041 Durban, South Africa
[2] Univ Zimbabwe, Dept Math, POB MP 167, Harare, Zimbabwe
[3] Univ KwaZulu Natal, Coll Agr Engn & Sci, Sch Life Sci, Westville Campus, Durban, South Africa
关键词
Schistosomiasis; Mathematical model; Temperature variations; Optimal control; COST-EFFECTIVENESS ANALYSIS; TRANSMISSION DYNAMICS; CLIMATE-CHANGE; CONTROL STRATEGIES; EPIDEMIOLOGY; MANSONI; AFRICA; IMPACT;
D O I
10.1016/j.biosystems.2018.11.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Schistosomiasis, the most common water-borne infection worldwide, continues to pose a serious public health challenge in developing nations and to travellers who visit these endemic regions. We apply optimal control on a temperature dependent schistosomiasis model. Our optimal control aims to minimize the pre-patent and patent human population at minimal costs. Our analysis and results throughout the paper highlight the impact of optimal control shaping the future patterns of the disease. Our results show that optimal control can significantly reduce the schistosomiasis burden in the community and in some instance by more than three-fold. In addition, our results show that with low costs the optimal strategy will be carried out at or close to its maximum strength for a sufficiently long period of time, so as minimize the exposure and infection. With high costs, however, the control have to be implemented with reduced or even minimum, strength, to achieve an optimal balance between the costs and effects of control. Our findings suggest that optimal control theory can be useful on minimizing the infected host and vector. The study and its findings can provide a useful framework for designing cost-effective control for schistosomiasis.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 29 条
[1]   Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model\ [J].
Agusto, F. B. ;
Adekunle, A. I. .
BIOSYSTEMS, 2014, 119 :20-44
[2]   Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model [J].
Agusto, F. B. .
BIOSYSTEMS, 2013, 113 (03) :155-164
[3]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[4]   MODELING THE EFFECTS OF SCHISTOSOMIASIS ON THE TRANSMISSION DYNAMICS OF HIV/AIDS [J].
Bhunu, C. P. ;
Tchuenche, J. M. ;
Garira, W. ;
Magombedze, G. ;
Mushayabasa, S. .
JOURNAL OF BIOLOGICAL SYSTEMS, 2010, 18 (02) :277-297
[5]   Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission dynamics and control [J].
Brooker, Simon .
TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 2007, 101 (01) :1-8
[6]   Schistosomiasis control: praziquantel forever? [J].
Cioli, Donato ;
Pica-Mattoccia, Livia ;
Basso, Annalisa ;
Guidi, Alessandra .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2014, 195 (01) :23-29
[7]   Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue [J].
Coutinho, F. A. B. ;
Burattini, M. N. ;
Lopez, L. F. ;
Massad, E. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (08) :2263-2282
[8]  
EL-HASSAN A A, 1974, Folia Parasitologica (Ceske Budejovice), V21, P181
[9]  
Githeko AK, 2000, B WORLD HEALTH ORGAN, V78, P1136
[10]   Effect of temperature on the Bulinus globosus - Schistosoma haematobium system [J].
Kalinda, Chester ;
Chimbari, Moses J. ;
Mukaratirwa, Samson .
INFECTIOUS DISEASES OF POVERTY, 2017, 6