Orthogonal Frames and Indexed Relations

被引:1
作者
Balbiani, Philippe [1 ]
Fernandez Gonzalez, Saul [1 ]
机构
[1] Univ Toulouse, CNRS, Inst Rech Informat Toulouse, Toulouse, France
来源
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2021) | 2021年 / 13038卷
关键词
D O I
10.1007/978-3-030-88853-4_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define and study the notion of an indexed frame. This is a bi-dimensional structure consisting of a Cartesian product equipped with relations which only relate pairs if they coincide in one of their components. We show that these structures are quite ubiquitous in modal logic, showing up in the literature as products of Kripke frames, subset spaces, or temporal frames for STIT logics. We show that indexed frames are completely characterised by their 'orthogonal' relations, and we provide their sound and complete logic. Using these 'orthogonality' results, we provide necessary and sufficient conditions for an arbitrary Kripke frame to be isomorphic to certain well-known bi-dimensional structures.
引用
收藏
页码:219 / 234
页数:16
相关论文
共 18 条
[1]  
Areces C, 2007, STUD LOGIC PRACT REA, V3, P821
[2]  
Balbiani Philippe, 2020, Advances in Modal Logic
[3]  
Belnap N., 2001, Facing the future: Agents and choices in our indeterminist world
[4]  
Blackburn Patrick, 2001, CAMBRIDGE TRACTS THE, V53, DOI [10.1017/CBO9781107050884, DOI 10.1017/CBO9781107050884]
[5]   COMPARING SEMANTICS FOR TEMPORAL STIT LOGIC [J].
Ciuni, Roberto ;
Lorini, Emiliano .
LOGIQUE ET ANALYSE, 2018, (243) :299-339
[6]  
GABBAY DM, 2003, MANY DIMENSIONAL MOD
[7]  
Georgatos K., 1994, Knowledge representation and reasoning under uncertainty. Logic at work, P147
[8]   PROPERTIES OF INDEPENDENTLY AXIOMATIZABLE BIMODAL LOGICS [J].
KRACHT, M ;
WOLTER, F .
JOURNAL OF SYMBOLIC LOGIC, 1991, 56 (04) :1469-1485
[9]  
Lorini Emiliano, 2013, Journal of Applied Non-Classical Logics, V23, P372, DOI 10.1080/11663081.2013.841359
[10]  
Makinson D., 1971, Notre Dame Journal of Formal Logic, V12, P252, DOI 10.1305/ndjfl/1093894226