Perceptual Extreme Super Resolution Network with Receptive Field Block

被引:71
作者
Shang, Taizhang [1 ]
Dai, Qiuju [1 ]
Zhu, Shengchen [1 ]
Yang, Tong [1 ]
Guo, Yandong [1 ]
机构
[1] OPPO Res, Shenzhen, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
关键词
IMAGE SUPERRESOLUTION;
D O I
10.1109/CVPRW50498.2020.00228
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Perceptual Extreme Super-Resolution for single image is extremely difficult, because the texture details of different images vary greatly. To tackle this difficulty, we develop a super resolution network with receptive field block based on Enhanced SRGAN. We call our network RFB-ESRGAN. The key contributions are listed as follows. First, for the purpose of extracting multi-scale information and enhance the feature discriminability, we applied receptive field block (RFB) to super resolution. RFB has achieved competitive results in object detection and classification. Second, instead of using large convolution kernels in multi-scale receptive field block, several small kernels are used in RFB, which makes us be able to extract detailed features and reduce the computation complexity. Third, we alternately use different upsampling methods in the upsampling stage to reduce the high computation complexity and still remain satisfactory performance. Fourth, we use the ensemble of 10 models of different iteration to improve the robustness of model and reduce the noise introduced by each individual model. Our experimental results show the superior performance of RFB-ESRGAN. According to the preliminary results of NTIRE 2020 Perceptual Extreme Super-Resolution Challenge, our solution ranks first among all the participants.
引用
收藏
页码:1778 / 1787
页数:10
相关论文
共 36 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]  
[Anonymous], 2015, ACS SYM SER
[3]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[4]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[5]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[6]   SoftCuts: A Soft Edge Smoothness Prior for Color Image Super-Resolution [J].
Dai, Shengyang ;
Han, Mei ;
Xu, Wei ;
Wu, Ying ;
Gong, Yihong ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (05) :969-981
[7]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[8]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[9]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[10]  
DUCHON CE, 1979, J APPL METEOROL, V18, P1016, DOI 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO