Imaging polarimetry in age-related macular degeneration

被引:82
作者
Miura, Masahiro [1 ,2 ,4 ]
Yamanari, Masahiro [2 ,4 ]
Iwasaki, Takuya [1 ,2 ]
Elsner, Ann E. [5 ]
Makita, Shuichi [2 ,4 ]
Yatagai, Toyohiko [3 ]
Yasuno, Yoshiaki [2 ,4 ]
机构
[1] Tokyo Med Univ, Dept Ophthalmol, Tokyo, Japan
[2] Tokyo Med Univ, Computat Opt & Ophthalmol Grp, Tokyo, Japan
[3] Univ Tsukuba, Inst Appl Phys, Tsukuba, Ibaraki, Japan
[4] Univ Tsukuba, Computat Opt Grp, Tsukuba, Ibaraki, Japan
[5] Indiana Univ, Sch Optometry, Bloomington, IN USA
关键词
D O I
10.1167/iovs.07-0501
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. To evaluate the birefringence properties of eyes with age-related macular degeneration (AMD). To compare the information from two techniques-scanning laser polarimetry (GDx) and polarization-sensitive spectral-domain optical coherence tomography (OCT)- and investigate how they complement each other. METHODS. The authors prospectively examined the eyes of two healthy subjects and 13 patients with exudative AMD. Using scanning laser polarimetry, they computed phase-retardation maps, average reflectance images, and depolarized light images. To obtain polarimetry information with improved axial resolution, they developed a fiber-based, polarization-sensitive, spectral-domain OCT system and measured the phase retardation associated with birefringence in the same eyes. RESULTS. Both GDx and polarization-sensitive spectral-domain optical coherence tomography detected abnormal birefringence at the locus of exudative lesions. Polarization-sensitive, spectral-domain OCT showed that in the old lesions with fibrosis, phase-retardation values were significantly larger than in the new lesions (P = 0.020). Increased scattered light and altered polarization scramble were associated with portions of the lesions. CONCLUSIONS. GDx and polarization-sensitive spectral-domain OCT are complementary in probing birefringence properties in exudative AMD. Polarimetry findings in exudative AMD emphasized different features and were related to the progression of the disease, potentially providing a noninvasive tool for microstructure in exudative AMD.
引用
收藏
页码:2661 / 2667
页数:7
相关论文
共 31 条
[1]   Scanning laser polarimetry with variable corneal compensation: Identification and correction for corneal birefringence in eyes with macular disease [J].
Bagga, H ;
Greenfield, DS ;
Knighton, RW .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (05) :1969-1976
[2]  
BARTSCH DU, 1993, NEUROSCI BIOBEHAV R, V17, P459
[3]   Improved contrast of subretinal structures using polarization analysis [J].
Burns, SA ;
Elsner, AE ;
Mellem-Kairala, MB ;
Simmons, RB .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (09) :4061-4068
[4]   Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography [J].
Cense, B ;
Nassif, NA ;
Chen, T ;
Pierce, M ;
Yun, SH ;
Park, BH ;
Bouma, BE ;
Tearney, GJ ;
de Boer, JF .
OPTICS EXPRESS, 2004, 12 (11) :2435-2447
[5]   In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography [J].
Cense, B ;
Chen, HC ;
Park, BH ;
Pierce, MC ;
de Boer, JF .
JOURNAL OF BIOMEDICAL OPTICS, 2004, 9 (01) :121-125
[6]  
Cense B., 2005, OPTICAL COHERENCE TO
[7]   Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography [J].
deBoer, JF ;
Milner, TE ;
vanGemert, MJC ;
Nelson, JS .
OPTICS LETTERS, 1997, 22 (12) :934-936
[8]   SPATIALLY RESOLVED BIREFRINGENCE OF THE RETINAL NERVE-FIBER LAYER ASSESSED WITH A RETINAL LASER ELLIPSOMETER [J].
DREHER, AW ;
REITER, K ;
WEINREB, RN .
APPLIED OPTICS, 1992, 31 (19) :3730-3735
[9]   Ultrahigh-resolution ophthalmic optical coherence tomography [J].
Drexler, W ;
Morgner, U ;
Ghanta, RK ;
Kärtner, FX ;
Schuman, JS ;
Fujimoto, JG .
NATURE MEDICINE, 2001, 7 (04) :502-507
[10]   Infrared imaging of sub-retinal structures in the human ocular fundus [J].
Elsner, AE ;
Burns, SA ;
Weiter, JJ ;
Delori, FC .
VISION RESEARCH, 1996, 36 (01) :191-205