Convergence Theorems in Interval-Valued Riemann-Lebesgue Integrability

被引:9
作者
Croitoru, Anca [1 ]
Gavrilut, Alina [1 ]
Iosif, Alina [2 ]
Sambucini, Anna Rita [3 ]
机构
[1] Univ Alexandru Ioan Cuza, Fac Math, Bd Carol I,11, Iasi 700506, Romania
[2] Petr Gas Univ Ploiesti, Dept Comp Sci Informat Technol Math & Phys, Bd Bucuresti 39, Ploiesti 100680, Romania
[3] Univ Perugia, Dept Math & Comp Sci, 1 Via Vanvitelli, I-06123 Perugia, Italy
关键词
Riemann-Lebesgue integral; interval-valued (set) multifunction; non-additive set function; Lebesgue theorem; Fatou theorem; INTEGRATION;
D O I
10.3390/math10030450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide some limit theorems for sequences of Riemann-Lebesgue integrable functions. More precisely, Lebesgue-type convergence and Fatou theorems are established. Then, these results are extended to the case of Riemann-Lebesgue integrable interval-valued multifunctions.
引用
收藏
页数:15
相关论文
共 50 条
[1]  
[Anonymous], 2012, World Academy of Science, Engineering and Technology (WASET)
[2]  
[Anonymous], 2013, Discuss. Math. Differ. Incl. Control Optim.
[3]  
Bustince H., P 6 INT SUMMER SCH A, P23
[4]  
Candeloro D., 1996, Rend. Mat. Roma Ser, V16, P563
[5]   Properties of the Riemann-Lebesgue integrability in the non-additive case [J].
Candeloro, Domenico ;
Croitoru, Anca ;
Gavrilut, Alina ;
Iosif, Alina ;
Sambucini, Anna Rita .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) :577-589
[6]   Some new results on integration for multifunction [J].
Candeloro, Domenico ;
Di Piazza, Luisa ;
Musial, Kazimierz ;
Sambucini, Anna Rita .
RICERCHE DI MATEMATICA, 2018, 67 (02) :361-372
[7]   Atomicity related to non-additive integrability [J].
Candeloro D. ;
Croitoru A. ;
Gavriluţ A. ;
Sambucini A.R. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (3) :435-449
[8]   On the integration of Riemann-measurable vector-valued functions [J].
Caponetti, Diana ;
Marraffa, Valeria ;
Naralenkov, Kirill .
MONATSHEFTE FUR MATHEMATIK, 2017, 182 (03) :513-536
[9]   The Birkhoff integral and the property of Bourgain [J].
Cascales, B ;
Rodríguez, J .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :259-279
[10]  
Chitescu I., 2021, Using the Choquet integral for the determination of the anxiety degree, DOI DOI 10.21203/RS.3.RS-1027357/V1