Vertex-quasiprimitive locally primitive Graphs

被引:0
作者
Lou, Ben Gong [1 ]
Li, Cai Heng [2 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650031, Yunnan, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Vertex-quasiprimitive; Locally primitive; Arc-transitive; 2-ARC TRANSITIVE GRAPHS; CAYLEY-GRAPHS; FINITE;
D O I
10.1007/s10801-021-01094-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that finite non-bipartite locally primitive arc-transitive graphs are normal covers of 'basic objects'-vertex quasiprimitive ones. Praeger in (J London Math Soc 47(2):227-239, 1993) showed that a quasiprimitive action of a group G on a nonbipartite finite 2-arc transitive graph must be one of four of the eight O'Nan-Scott types. In this paper, we classify the basic locally primitive graphs where the action on vertices has O'Nan-Scott type HS or HC, extending the well-known Praeger's result about 'basic' 2-arc transitive graphs.
引用
收藏
页码:1279 / 1288
页数:10
相关论文
共 19 条
[1]   2-ARC TRANSITIVE GRAPHS AND TWISTED WREATH-PRODUCTS [J].
BADDELEY, RW .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (03) :215-237
[2]   On the Weiss conjecture for finite locally primitive graphs [J].
Conder, MD ;
Li, CH ;
Praeger, CE .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 :129-138
[3]  
Dixon J.D., 1996, Graduate Texts in Mathematics
[4]   On the automorphism groups of Cayley graphs of finite simple groups [J].
Fang, XG ;
Praeger, CE ;
Wang, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :563-578
[5]   Finite two-arc transitive graphs admitting a Ree simple group [J].
Fang, XG ;
Praeger, CE .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3755-3769
[6]   Finite two-arc transitive graphs admitting a Suzuki simple group [J].
Fang, XG ;
Praeger, CE .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3727-3754
[7]   Locally primitive Cayley graphs of finite simple groups [J].
Fang, XG ;
Praeger, CE ;
Wang, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (01) :58-66
[8]  
Giudici M, 2018, ARS MATH CONTEMP, V14, P67
[9]   ON THE FULL AUTOMORPHISM GROUP OF A GRAPH [J].
GODSIL, CD .
COMBINATORICA, 1981, 1 (03) :243-256
[10]   ON FINITE AFFINE 2-ARC TRANSITIVE GRAPHS [J].
IVANOV, AA ;
PRAEGER, CE .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (05) :421-444