Automated circuit fabrication and direct characterization of carbon nanotube vibrations

被引:11
作者
Zeevi, G. [1 ]
Shlafman, M. [1 ]
Tabachnik, T. [1 ]
Rogachevsky, Z. [1 ]
Rechnitz, S. [1 ]
Goldshtein, I. [1 ]
Shlafman, S. [1 ]
Gordon, N. [1 ]
Alchanati, G. [1 ]
Itzhak, M. [1 ]
Moshe, Y. [1 ]
Hajaj, E. M. [1 ]
Nir, H. [1 ]
Milyutin, Y. [1 ]
Izraeli, T. Y. [1 ]
Razin, A. [1 ]
Shtempluck, O. [1 ]
Kotchtakov, V. [1 ]
Yaish, Y. E. [1 ]
机构
[1] Technion, Andrew & Erna Viterbi Fac Elect Engn, IL-32000 Haifa, Israel
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
关键词
LARGE-SCALE; SPECTROSCOPY; FUNCTIONALIZATION;
D O I
10.1038/ncomms12153
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]   Structure-assigned optical spectra of single-walled carbon nanotubes [J].
Bachilo, SM ;
Strano, MS ;
Kittrell, C ;
Hauge, RH ;
Smalley, RE ;
Weisman, RB .
SCIENCE, 2002, 298 (5602) :2361-2366
[3]   Fluctuation broadening in carbon nanotube resonators [J].
Barnard, Arthur W. ;
Sazonova, Vera ;
van der Zande, Arend M. ;
McEuen, Paul L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (47) :19093-19096
[4]   Absorption spectroscopy of individual single-walled carbon nanotubes [J].
Berciaud, Stephane ;
Cognet, Laurent ;
Poulin, Philippe ;
Weisman, R. Bruce ;
Lounis, Brahim .
NANO LETTERS, 2007, 7 (05) :1203-1207
[5]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[6]   Electron transport in very clean, as-grown suspended carbon nanotubes [J].
Cao, J ;
Wang, Q ;
Dai, H .
NATURE MATERIALS, 2005, 4 (10) :745-749
[7]   Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects [J].
Cao, Qing ;
Rogers, John A. .
ADVANCED MATERIALS, 2009, 21 (01) :29-53
[8]  
Chaste J, 2012, NAT NANOTECHNOL, V7, P300, DOI [10.1038/NNANO.2012.42, 10.1038/nnano.2012.42]
[9]   Size dependence of Young's modulus in ZnO nanowires [J].
Chen, CQ ;
Shi, Y ;
Zhang, YS ;
Zhu, J ;
Yan, YJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[10]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989