Ricci almost solitons on semi-Riemannian warped products

被引:12
作者
Borges, Valter [1 ]
Tenenblat, Keti [1 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
conformal fields; Einstein manifolds; Ricci almost solitons; Ricci solitons; warped products; GRADIENT RICCI; SCALAR CURVATURE; RIGIDITY; COMPACT; METRICS; CLASSIFICATION; MANIFOLDS; FIELDS; SPACES;
D O I
10.1002/mana.201900242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a gradient Ricci almost soliton on a warped product, (B-n x(h) F-m,g,f,lambda) whose potential function f depends on the fiber, is either a Ricci soliton or lambda is not constant and the warped product, the base and the fiber are Einstein manifolds, which admit conformal vector fields. Assuming completeness, a classification is provided for the gradient Ricci almost solitons on warped products, whose potential functions depend on the fiber. An important decomposition property of the potential function in terms of functions which depend either on the base or on the fiber is proven. In the case of a complete gradient Ricci soliton, the potential function depends only on the base.
引用
收藏
页码:22 / 43
页数:22
相关论文
共 42 条
[1]   RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS [J].
Barros, A. ;
Batista, R. ;
Ribeiro, E., Jr. .
ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) :1267-1279
[2]   Compact almost Ricci solitons with constant scalar curvature are gradient [J].
Barros, A. ;
Batista, R. ;
Ribeiro, E., Jr. .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01) :29-39
[3]   SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) :1033-1040
[4]   A note on rigidity of the almost Ricci soliton [J].
Barros, Abdenago ;
Gomes, Jose N. ;
Ribeiro, Ernani, Jr. .
ARCHIV DER MATHEMATIK, 2013, 100 (05) :481-490
[5]  
Besse AL, 2007, EINSTEIN MANIFOLDS
[6]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[7]   Hitchin-Thorpe inequality and Kaehler metrics for compact almost Ricci soliton [J].
Brasil, A. ;
Costa, E. ;
Ribeiro Jr, E. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) :1851-1860
[8]   On Riemann spaces conformal to Euclidean space [J].
Brinkmann, HW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1923, 9 :1-3
[9]   Half conformally flat gradient Ricci almost solitons [J].
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Valle-Regueiro, X. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189)
[10]  
Bryant R. L, 2005, preprint