On a Moving Mesh Method Applied to the Shallow Water Equations

被引:0
|
作者
Felcman, J. [1 ]
Kadrnka, L. [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Euler equations; shallow water equations; shocks; finite volume method; non-stationary problems; moving mesh method;
D O I
10.1063/1.3498314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The moving mesh method is applied to the numerical solution of the shallow water equations. The original numerical flux of the Vijayasundaram type is used in the finite volume method The mesh adaptation procedure is described. The relevant numerical examples are presented.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
  • [21] HYPERBOLICITY-PRESERVING AND WELL-BALANCED STOCHASTIC GALERKIN METHOD FOR SHALLOW WATER EQUATIONS
    Dai, Dihan
    Epshteyn, Yekaterina
    Narayan, Akil
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02) : A929 - A952
  • [22] Regularized shallow water equations and an efficient method for numerical simulation of shallow water flows
    O. V. Bulatov
    T. G. Elizarova
    Computational Mathematics and Mathematical Physics, 2011, 51 : 160 - 173
  • [23] RUNGE-KUTTA DISCONTINUOUS GALERKIN METHOD APPLIED TO SHALLOW WATER EQUATIONS WITH FLOODING AND DRYING TREATMENT
    Poussel, C.
    Ersoy, M.
    Golay, F.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2024, 2024, : 166 - 173
  • [24] Regularized Shallow Water Equations and an Efficient Method for Numerical Simulation of Shallow Water Flows
    Bulatov, O. V.
    Elizarova, T. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (01) : 160 - 173
  • [25] A High-Order Well-Balanced Positivity-Preserving Moving Mesh DG Method for the Shallow Water Equations With Non-Flat Bottom Topography
    Min Zhang
    Weizhang Huang
    Jianxian Qiu
    Journal of Scientific Computing, 2021, 87
  • [26] A High-Order Well-Balanced Positivity-Preserving Moving Mesh DG Method for the Shallow Water Equations With Non-Flat Bottom Topography
    Zhang, Min
    Huang, Weizhang
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [27] A moving mesh finite difference method for equilibrium radiation diffusion equations
    Yang, Xiaobo
    Huang, Weizhang
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 661 - 677
  • [28] Hybrid OpenMP/AVX acceleration of a Split HLL Finite Volume Method for the Shallow Water and Euler Equations
    Liu, Ji-Yueh
    Smith, Matthew R.
    Kuo, Fang-An
    Wu, Jong-Shin
    COMPUTERS & FLUIDS, 2015, 110 : 181 - 188
  • [29] Enriched Galerkin method for the shallow-water equations
    Moritz Hauck
    Vadym Aizinger
    Florian Frank
    Hennes Hajduk
    Andreas Rupp
    GEM - International Journal on Geomathematics, 2020, 11
  • [30] An adaptive finite point method for the shallow water equations
    Ortega, Enrique
    Onate, Eugenio
    Idelsohn, Sergio
    Buachart, Chinapat
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (02) : 180 - 204